首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
大气科学   1篇
地球物理   3篇
地质学   6篇
天文学   3篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Landslides - Earthquake-induced landslides involve excessive movement of slopes, usually along slip surfaces. This seismic movement of slopes may depend crucially on (a) the soil response along the...  相似文献   
2.
Loukas Vlahos 《Solar physics》1987,111(1):155-166
Energetic electrons, with energies 10–100 keV, accelerated during the impulsive phase of solar flares, sometimes encounter increasing magnetic fields as they stream towards the chromosphere. A consequence of the conservation of their magnetic moment is that the electrons with large initial pitch angle will be reflected at different heights from the atmosphere. Energetic electrons reflected below the transition zone will lose most of their energy to collisions and will never return to the corona. Thus, electrons reflected above the transition zone form a loss-cone velocity distribution which can be unstable to Electron Cyclotron Maser (ECM). The interaction of quasi-perpendicular shocks with the ambient coronal plasma will form a ‘ring’ or ‘hollow beam’ velocity distribution upstream of the shock. ‘Ring’ velocity distributions are also unstable to the ECM instability. A review of the recent results on the theory of ECM will be presented. We will focus our discussion on the questions: (a) What are the characteristics of the linear growth rate of the ECM during solar flares? (b) How does the ECM saturate and what is its efficiency? (c) How does the ECM generated radiation modify the flare environment? Finally we will review the outstanding questions in the theory of ECM and we will relate the theoretical predictions to current observations.  相似文献   
3.
Papaioannou  G.  Loukas  A.  Vasiliades  L.  Aronica  G. T. 《Natural Hazards》2016,81(1):117-144
An innovative approach in the investigation of complex landscapes for hydraulic modelling applications is the use of terrestrial laser scanner (TLS) that can lead to a high-resolution digital elevation model (DEM). Another notable factor in flood modelling is the selection of the hydrodynamic model (1D, 2D and 1D/2D), especially in complex riverine topographies, that can influence the accuracy of flood inundation area and mapping. This paper uses different types of hydraulic–hydrodynamic modelling approaches and several types of river and riparian area spatial resolution for the implementation of a sensitivity analysis for floodplain mapping and flood inundation modelling process at ungauged watersheds. Four data sets have been used for the construction of the river and riparian areas: processed and unprocessed TLS data, topographic land survey data and typical digitized contours from 1:5000-scale topographic maps. Modelling approaches combinations consist of: one-dimensional hydraulic models (HEC-RAS, MIKE 11), two-dimensional hydraulic models (MIKE 21, MIKE 21 FM) and combinations of coupled hydraulic models (MIKE 11/MIKE 21) within the MIKE FLOOD platform. Historical flood records and estimated flooded area derived from an observed extreme flash-flood event have been used in the validation process using 2 × 2 contingency tables. Flood inundation maps have been generated for each modelling approach and landscape configuration at the lower part of Xerias River reach at Volos, Greece, and compared for assessing the sensitivity of input data and model structure uncertainty. Results provided from contingency table analysis indicate the sensitivity of floodplain modelling on the DEM spatial resolution and the hydraulic modelling approach.  相似文献   
4.
Loukas Vlahos 《Solar physics》1989,121(1-2):431-447
Particle acceleration during solar flares is a complex process where the main actors (Direct (D.C.) or turbulent electric fields) are hidden from us. It is easy to construct a successful particle accelertion model if we are allowed to impose on the flaring region arbitrary conditions (e.g., strength and scale length of the D.C. or turbulent electric fields), but then we have not solved the acceleration problem; we have simply re-defined it. We outline in this review three recent observations which indicate that the following physical processes may happen during solar flares: (1) Release of energy in a large number of microflares; (2) short time-scales; (3) small length scales; and (4) coherent radiation and acceleration sources. We propose that these new findings force us to reformulate the acceleration process inside a flaring active region assuming that a large number of reconnection sites will burst almost simultaneously. All the well-known acceleration mechanisms (electric fields, turbulent fields, shock waves, etc.) reviewed briefly here, can be used in a statistical model where each particle is gaining energy through its interaction with many small reconnection sites.  相似文献   
5.
We discuss the inverse medium problem associated with the reconstruction of the heterogeneous material profile of a semi-infinite (layered) soil medium, directly in the time domain, based on the complete waveform response of the medium to interrogating waves. To tackle the inversion process, we use a partial-differential-equation-constrained optimization approach, supplemented with a time-dependent regularization scheme. We introduce an absorbing boundary to truncate the semi-infinite extent of the physical domain, and propose two schemes to refine the reconstructed profiles: the first is based on iteratively re-positioning the truncation boundary until convergence, and the second is based on optimizing the observation period, so as to exclude records with information beyond the truncation boundary. We present numerical results that attest to the efficacy of the proposed schemes in reconstructing sharp profiles of semi-infinite soil domains using both noise-free and noisy data, while in the presence of absorbing boundaries.  相似文献   
6.
7.
We discuss a new formulation for transient scalar wave simulations in heterogeneous semi-infinite domains. To deal with the semi-infinite extent of the physical domains, we introduce truncation boundaries and adopt perfectly matched layers (PMLs) as the boundary wave absorbers. Within this framework, we develop a new mixed displacement-stress (or stress memory) finite element formulation based on unsplit-field PMLs. We use, as typically done, complex-coordinate stretching transformations in the frequency domain, and recover the governing partial differential equations in the time-domain through the inverse Fourier transform. Upon spatial discretization, the resulting equations lead to a mixed semi-discrete form, where both displacements and stresses (or stress histories/memories) are treated as independent unknowns. We propose approximant pairs, which, numerically, are shown to be stable. The resulting mixed finite element scheme is relatively simple and straightforward to implement, when compared against split-field PML techniques. It also bypasses the need for complicated time integration schemes that arise when recent displacement-based formulations are used. We report numerical results for 1D and 2D scalar wave propagation in semi-infinite domains truncated by PMLs. We also conduct parametric studies and report on the effect the various PML parameter choices have on the simulation error.  相似文献   
8.
Holocene environmental changes in Mongolia: A review   总被引:3,自引:0,他引:3  
Holocene environmental change in Mongolia is reconstructed on the basis of recently published paleoclimate records, including lake levels, pollen assemblages, and eolian sediment records. These data indicate that the early Holocene of Mongolia is characterized by increasing temperature and humidity. Paleosol development, high lake-stands, and a more southward distribution of forest-steppe environments suggest the early-mid Holocene was humid. The mid-Holocene however is characterized by enhanced aridity, even though the onset and termination of the dry interval differs from place to place. Finally, humidity increased again during the late Holocene, as evaporation decreased in concert with dropping temperatures in Mongolia.  相似文献   
9.
10.
Theoretical and Applied Climatology - This paper demonstrates a climate change impact study on the hydrological process of a data-scarce Greek watershed. The Soil and Water Assessment Tool (SWAT)...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号