首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   19篇
  国内免费   1篇
测绘学   3篇
大气科学   13篇
地球物理   56篇
地质学   51篇
海洋学   21篇
天文学   35篇
自然地理   22篇
  2023年   3篇
  2022年   2篇
  2021年   6篇
  2020年   8篇
  2019年   5篇
  2018年   11篇
  2017年   4篇
  2016年   8篇
  2015年   14篇
  2014年   4篇
  2013年   11篇
  2012年   7篇
  2011年   7篇
  2010年   6篇
  2009年   13篇
  2008年   10篇
  2007年   8篇
  2006年   6篇
  2005年   11篇
  2004年   7篇
  2003年   6篇
  2002年   3篇
  2001年   7篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1994年   4篇
  1992年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1977年   1篇
  1975年   1篇
  1960年   1篇
  1958年   1篇
  1957年   1篇
排序方式: 共有201条查询结果,搜索用时 31 毫秒
1.
Wildfire significantly alters the hydrologic properties of a burned area, leading to increases in overland flow, erosion, and the potential for runoff-generated debris flows. The initiation of debris flows in recently burned areas is well characterized by rainfall intensity-duration (ID) thresholds. However, there is currently a paucity of data quantifying the rainfall intensities required to trigger post-wildfire debris flows, which limits our understanding of how and why rainfall ID thresholds vary in different climatic and geologic settings. In this study, we monitored debris-flow activity following the Pinal Fire in central Arizona, which differs from both a climatic and hydrogeomorphic perspective from other regions in the western United States where ID thresholds for post-wildfire debris flows are well established, namely the Transverse Ranges of southern California. Since the peak rainfall intensity within a rainstorm may exceed the rainfall intensity required to trigger a debris flow, the development of robust rainfall ID thresholds requires knowledge of the timing of debris flows within rainstorms. Existing post-wildfire debris-flow studies in Arizona only constrain the peak rainfall intensity within debris-flow-producing storms, which may far exceed the intensity that actually triggered the observed debris flow. In this study, we used pressure transducers within five burned drainage basins to constrain the timing of debris flows within rainstorms. Rainfall ID thresholds derived here from triggering rainfall intensities are, on average, 22 mm h−1 lower than ID thresholds derived under the assumption that the triggering intensity is equal to the maximum rainfall intensity recorded during a rainstorm. We then use a hydrologic model to demonstrate that the magnitude of the 15-min rainfall ID threshold at the Pinal Fire site is associated with the rainfall intensity required to exceed a recently proposed dimensionless discharge threshold for debris-flow initiation. Model results further suggest that previously observed differences in regional ID thresholds between Arizona and the San Gabriel Mountains of southern California may be attributed, in large part, to differences in the hydraulic properties of burned soils. © 2019 John Wiley & Sons, Ltd.  相似文献   
2.
Impact angle plays a significant role in determining the fate of the projectile. In this study, we use a suite of hypervelocity impact experiments to reveal how impact angle affects the preservation, distribution, and physical state of projectile residues in impact craters. Diverse types of projectiles, including amorphous silicates, crystalline silicates, and aluminum, in two sizes (6.35 and 12.7 mm), were launched into blocks of copper or 6061 aluminum at speeds between 1.9 and 5.7 km s−1. Crater interiors preserve projectile residues in all cases, including conditions relevant to the asteroid belt. These residues consist of projectile fragments or projectile-rich glasses, depending on impact conditions. During oblique impacts at 30° and 45°, the uprange crater wall preserves crystalline fragments of the projectile. The fragments of water-rich projectiles such as antigorite remain hydrated. Several factors contribute to enhanced preservation on the uprange wall, including a weaker shock uprange, uprange acceleration as the shock reflects off the back of the projectile, and rapid quenching of melts along the projectile–target interface. These findings have two broader implications. First, the results suggest a new collection strategy for flyby sample return missions. Second, these results predict that the M-type asteroid Psyche should bear exogenic, impactor-derived debris.  相似文献   
3.
Atom probe microscopy (APM) is a relatively new in situ tool for measuring isotope fractions from nanoscale volumes (< 0.01 μm3). We calculate the theoretical detectable difference of an isotope ratio measurement result from APM using counting statistics of a hypothetical data set to be ± 4δ or 0.4% (2s). However, challenges associated with APM measurements (e.g., peak ranging, hydride formation and isobaric interferences), result in larger uncertainties if not properly accounted for. We evaluate these factors for Re‐Os isotope ratio measurements by comparing APM and negative thermal ionisation mass spectrometry (N‐TIMS) measurement results of pure Os, pure Re, and two synthetic Re‐Os‐bearing alloys from Schwander et al. (2015, Meteoritics and Planetary Science, 50, 893) [the original metal alloy (HSE) and alloys produced by heating HSE within silicate liquid (SYN)]. From this, we propose a current best practice for APM Re‐Os isotope ratio measurements. Using this refined approach, mean APM and N‐TIMS 187Os/189Os measurement results agree within 0.05% and 2s (pure Os), 0.6–2% and 2s (SYN) and 5–10% (HSE). The good agreement of N‐TIMS and APM 187Os/189Os measurements confirms that APM can extract robust isotope ratios. Therefore, this approach permits nanoscale isotope measurements of Os‐bearing alloys using the Re‐Os geochronometer that could not be measured by conventional measurement principles.  相似文献   
4.
5.
Understanding groundwater–surface water exchange in river banks is crucial for effective water management and a range of scientific disciplines. While there has been much research on bank storage, many studies assume idealized aquifer systems. This paper presents a field‐based study of the Tambo Catchment (southeast Australia) where the Tambo River interacts with both an unconfined aquifer containing relatively young and fresh groundwater (<500 μS/cm and <100 years old) and a semi‐confined artesian aquifer containing old and saline groundwater (electrical conductivity > 2500 μS/cm and >10 000 years old). Continuous groundwater elevation and electrical conductivity monitoring within the different aquifers and the river suggest that the degree of mixing between the two aquifers and the river varies significantly in response to changing hydrological conditions. Numerical modelling using MODFLOW and the solute transport package MT3DMS indicates that saline water in the river bank moves away from the river during flooding as hydraulic gradients reverse. This water then returns during flood recession as baseflow hydraulic gradients are re‐established. Modelling also indicates that the concentration of a simulated conservative groundwater solute can increase for up to ~34 days at distances of 20 and 40 m from the river in response to flood events approximately 10 m in height. For the same flood event, simulated solute concentrations within 10 m of the river increase for only ~15 days as the infiltrating low‐salinity river water drives groundwater dilution. Average groundwater fluxes to the river stretch estimated using Darcy's law were 7 m3/m/day compared with 26 and 3 m3/m/day for the same periods via mass balance using Radon (222Rn) and chloride (Cl), respectively. The study shows that by coupling numerical modelling with continuous groundwater–surface water monitoring, the transient nature of bank storage can be evaluated, leading to a better understanding of the hydrological system and better interpretation of hydrochemical data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
6.
Feature tracking of orthorectified pairs of Advanced Spaceborne Thermal Emission and Reflection Radiometer satellite images is used to calculate velocities for the Tasman Glacier, New Zealand (2002–2014) and the Khumbu Glacier, Nepal (2001–2008). Velocities in the middle and upper ablation zones of both glaciers show a long‐term decrease of ~10–20%, while the terminus of Khumbu Glacier has remained near stagnation throughout the study period. In contrast, there has been a recent acceleration of the lower terminus of Tasman Glacier, from ~5 m a–1 in 2002 to 40 m a–1 in 2014. Both of these glaciers have an extensive supraglacial debris cover across their lower ablation regions, with the Khumbu Glacier terminating on land and the Tasman Glacier terminating in a proglacial lake. The rapid recent increase in velocity of the terminus of Tasman Glacier is closely correlated with the increase in size of its proglacial lake. These results indicate the complex dynamic changes that mountain valley glaciers may undergo in response to long‐term negative mass balance.  相似文献   
7.
In order to decrease the simulation time of morphodynamic models, often-complex wave climates are reduced to a few representative wave conditions (RWC). When applied to embayed beaches, a test of whether a reduced wave climate is representative or not is to see whether it can recreate the observed equilibrium (long-term averaged) bathymetry of the bay. In this study, the wave climate experienced at Milagro Beach, Tarragona, Spain was discretized into ‘average’ and ‘extreme’ RWCs. Process-based morphodynamic simulations were sequenced and merged based on ‘persistent’ and ‘transient’ forcing conditions, the results of which were used to estimate the equilibrium bathymetry of the bay. Results show that the effect of extreme wave events appeared to have less influence on the equilibrium of the bay compared to average conditions of longer overall duration. Additionally, the persistent seasonal variation of the wave climate produces pronounced beach rotation and tends to accumulate sediment at the extremities of the beach, rather than in the central sections. It is, therefore, important to account for directional variability and persistence in the selection and sequencing of representative wave conditions as is it essential for accurately balancing the effects beach rotation events.  相似文献   
8.
Public transit plays an important role in emergency evacuations, particularly for areas where public transit serves as a major commute mode for commuters. Microsimulation techniques provide great flexibility in assessing different scenarios in emergency situations. Combining GIS-based network analysis with microsimulation techniques, this study developed a framework to simulate emergency evacuations using rail transit. Applying the framework to a hypothetical attack on the Pentagon, this study investigated the performance of the Washington Metropolitan Area Transit Authority’s Metrorail for large-scale evacuations. A network-based analysis was performed to estimate the number of riders in association with each metro line and station. Using VISSIM, a multi-mode micro-simulation software package, this study integrated a pedestrian model with a Metrorail transit model to evaluate the performance of the Metrorail in the hypothetical evacuations. The simulation results suggested that if the potential of Metrorail transit is effectively utilized, it could be very useful resource during a large-scale evacuation. This study demonstrated the great potential and flexibility of microsimulation techniques for evaluating complex evacuation scenarios and strategies. The framework and approach used in this study can be applied to analyze other similar situations and help develop effective evacuation plans.  相似文献   
9.
The Juan de Fuca Eddy is a seasonal, counter-clockwise gyre off the mouth of the Strait of Juan de Fuca between Washington, USA and British Columbia, Canada that may provide favorable feeding habitat for juvenile coho salmon (Oncorhynchus kisutch) during their early marine existence. In late September 2002, physical and biological sampling was conducted along two transects of the eddy region. Surface rope trawling was conducted to capture juvenile salmon and other nekton, along with bongo and neuston net tows to examine potential mesozooplanktonic salmon prey. Presence of the Juan de Fuca Eddy was confirmed with vertical water profiles. In addition, nutrient and chlorophyll a concentrations collected from 3-m depth were within the range observed in previous studies within the eddy region. In the mesozooplankton community, euphausiids, chaetognaths, and decapod megalopae were common. In the diet of juvenile coho salmon, euphausiids and decapod megalopae were dominant by percent number, and larval and juvenile fish were dominant by percent weight. Feeding intensity (percent body weight) based on stomach contents was variable, but not significantly different among stations. To compare the Juan de Fuca Eddy region with an upwelling area, we sampled along a transect off La Push (LP), Washington, USA which is south of the eddy. The eddy region was found to be less productive than the LP transect. Nutrients were lower, chlorophyll a concentrations were higher, and zooplankton abundance was generally higher along the LP transect than in the eddy region. In addition, more juvenile coho salmon were captured from the LP transect than the eddy region. Prey items in stomachs of salmon from the LP transect were heterogeneous compared to those from the eddy region. Feeding intensity along the LP transect was slightly lower and more variable than in the eddy region, and differences in feeding intensity among LP stations were significant. In addition, feeding intensities among stations nested within regions were significantly different.  相似文献   
10.
Globalization,Pacific Islands,and the paradox of resilience   总被引:1,自引:0,他引:1  
On April 2nd, 2007 a 12 m tsunami struck Simbo, a relatively remote island in Western Province, Solomon Islands. Although Simbo's population continues to depend on their own food production and small-scale governance regimes regulate access to resources, the island's way of life over the last century has increasingly been affected by processes associated with globalization. In this context of a rapidly globalizing world, this article examines the island's resilience and vulnerability to the tsunami and the adaptive capacities that enabled the response and recovery. The tsunami completely destroyed two villages and damaged fringing coral reefs, but casualties were low and social–ecological rebound relatively brisk. By combining social science methods (household surveys, focus group and ethnographic interviews) and underwater reef surveys we identify a number of countervailing challenges and opportunities presented by globalization that both nurture and suppress the island's resilience to high amplitude, low-frequency disturbances like tsunamis. Analysis suggests that certain adaptive capacities that sustain general system resilience come at the cost of more vulnerability to low-probability hazards. We discuss how communities undergoing increasingly complex processes of change must negotiate these kinds of trade-offs as they manage resilience at multiple spatial and temporal scales. Understanding the shifting dynamics of resilience may be critical for Pacific Island communities who seek to leverage globalization in their favor as they adapt to current social–ecological change and prepare for future large-scale ecological disturbances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号