首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
测绘学   2篇
地球物理   3篇
地质学   1篇
天文学   4篇
  2022年   1篇
  2016年   3篇
  2015年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2004年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
Detection of crop water stress is crucial for efficient irrigation water management. Potential of Satellite data to provide spatial and temporal dynamics of crop growth conditions makes it possible to monitor crop water stress at regional level. This study was conducted in parts of western Uttar Pradesh and Haryana. Multi-temporal Landsat data were used for detecting wheat crop water stress using vegetation indices (VIs), viz. vegetation water stress index (VWSI) and land surface wetness index water stress factor (Ws_LSWI). The estimated water stress from satellite data-based VIs was validated by water stress factor (Ws) derived from flux-tower data. The study observed Ws_LSWI to be better index for water stress detection. The results indicated that Ws_LSWI was superior over other index showing RMSE = 0.12, R2 = 0.65, whereas VWSI showed overestimated values with mean RD 4%.  相似文献   
2.
3.
Geotechnical and Geological Engineering - The Lengpui-Aizawl highway in the Northeastern part of India has witnessed several rockfall events in the past decades. This is the only highway that...  相似文献   
4.
We present a well behaved class of Charge Analogue of Heintzmann (Z. Phys. 228:489, 1969) solution. This solution describes charge fluid balls with positively finite central pressure and positively finite central density ; their ratio is less than one and causality condition is obeyed at the centre. The outmarch of pressure, density, pressure-density ratio and the adiabatic speed of sound is monotonically decreasing, however, the electric intensity is monotonically increasing in nature. The solution gives us wide range of constant K (1.25≤K≤15) for which the solution is well behaved and therefore, suitable for modeling of super dense star. For this solution the mass of a star is maximized with all degrees of suitability and by assuming the surface density ρ b =2×1014 g/cm3. Corresponding to K=1.25 and X=0.42, the maximum mass of the star comes out to be 3.64M Θ with linear dimension 24.31 km and central redshift 1.5316.  相似文献   
5.
The intra-cluster and inter-galactic media that pervade the large scale structure of the Universe are known to be magnetized at sub-micro Gauss to micro Gauss levels and to contain cosmic rays. The acceleration of cosmic rays and their evolution along with that of magnetic fields in these media is still not well understood. Diffuse radio sources of synchrotron origin associated with the Intra-Cluster Medium (ICM) such as radio halos, relics and mini-halos are direct probes of the underlying mechanisms of cosmic ray acceleration. Observations with radio telescopes such as the Giant Metrewave Radio Telescope, the Very Large Array and the Westerbork Synthesis Radio Telescope have led to the discoveries of about 80 such sources and allowed detailed studies in the frequency range 0.15–1.4 GHz of a few. These studies have revealed scaling relations between the thermal and non-thermal properties of clusters and favour the role of shocks in the formation of radio relics and of turbulent re-acceleration in the formation of radio halos and mini-halos. The radio halos are known to occur in merging clusters and mini-halos are detected in about half of the cool-core clusters. Due to the limitations of current radio telescopes, low mass galaxy clusters and galaxy groups remain unexplored as they are expected to contain much weaker radio sources. Distinguishing between the primary and the secondary models of cosmic ray acceleration mechanisms requires spectral measurements over a wide range of radio frequencies and with high sensitivity. Simulations have also predicted weak diffuse radio sources associated with filaments connecting galaxy clusters. The Square Kilometre Array (SKA) is a next generation radio telescope that will operate in the frequency range of 0.05–20 GHz with unprecedented sensitivities and resolutions. The expected detection limits of SKA will reveal a few hundred to thousand new radio halos, relics and mini-halos providing the first large and comprehensive samples for their study. The wide frequency coverage along with sensitivity to extended structures will be able to constrain the cosmic ray acceleration mechanisms. The higher frequency (>5 GHz) observations will be able to use the Sunyaev–Zel’dovich effect to probe the ICM pressure in addition to tracers such as lobes of head–tail radio sources. The SKA also opens prospects to detect the ‘off-state’ or the lowest level of radio emission from the ICM predicted by the hadronic models and the turbulent re-acceleration models.  相似文献   
6.
7.
Among rheological models for estimating the rate of dissipation of non-breaking waves in muddy seabeds, those representing viscoelastic and poroelastic behaviors are used widely. In that regard, the dependence of the wave attenuation coefficient derived from basic rheological representations of mud behavior is examined on a cursory basis. For wave attenuation due to viscoelastic muds, results based on a semi-analytical model incorporating the effects of typically thin mud layers are summarized. This and an existing model for poroelastic beds are tested against selective laboratory data. Relying on these tests, it is emphasized that fluid-like mud should be modeled as a viscoelastic fluid medium, and that only non-fluid beds can be modeled as poroelastic media. Mechanisms for energy dissipation depend on bed compactness specified by the solids volume fraction, porosity or density, and on a characteristic Péclet number defined in terms of particle size, permeability and wave frequency. Due to the role of the latter parameter, for simulation of wave attenuation the chosen rheological model for a bed of given compactness must be applicable over the expected range of wave frequency.  相似文献   
8.
In this paper we have presented a method of obtaining varieties of new parametric classes of spherically symmetric analytic solutions of the general relativistic field equations in canonical coordinates. A number of previously known classes of solutions has been rediscovered which describe perfect fluid balls with infinite central pressure and infinite central density though their ratio is positively finite and less then one. From the solutions of one of the class we have constructed a causal model of polytrope with constant sound speed Corresponding to the polytrope model we have maximized the Neutron star mass 3.26 M with the linear dimensions 32.27 kms with surface red shift 0.7355 and for other class we have constructed a causal model in which outmarch of pressure and density is monotonically decreasing and pressure–density ratio is positive and less than 1 throughout with in the ball. Corresponding to this model we have maximized the Neutron star mass 3.09 M with the linear dimensions 30.55 kms with surface red shifts 0.5811.  相似文献   
9.
The stress effect of Ni and Cd on the ammonium uptake varied significantly (ANOVA test) in free and immobilized state of the test organism. The effect due to the interaction between different variables (cell state type, metal type and metal dose) was studied to depict the significant or non‐significant variation in the ammonium uptake by free and immobilized cells in the presence of metal ions. Ammonium uptake exhibited a competitive mode of inhibition in the presence of Ni in both free and immobilized state of the organism. However, Cd exhibited non‐competitive and competitive inhibition in free and immobilized cells, respectively. The study demonstrates that there is a considerable influence of metal ions on the ammonium uptake. Cd was found to be more toxic compared to Ni in both free and immobilized state.  相似文献   
10.
We present a new class of spherically symmetric regular and well behaved solutions of the general relativistic field equations in isotropic coordinates. These solutions describe perfect fluid balls with positively finite central pressure and positively finite central density; their ratio is less than one and causality condition is obeyed at the centre. The solutions of this class, the outmarch of pressure, density pressure-density ratio and the ratio of sound speed to light is monotonically decreasing. Keeping in view of well behaved nature in terms of central red shift and surface red shift and by assuming the surface density ρ b =2×1014 g/cm3, we constructed a Neutral star model for k=2, resulting into maximum mass ≈6.36M Θ, linear dimension ≈48.08 km, surface red shift ≈1.132 and central red shift ≈17.1314.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号