首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   1篇
地质学   1篇
自然地理   1篇
  2020年   1篇
  2007年   1篇
  2005年   1篇
排序方式: 共有3条查询结果,搜索用时 62 毫秒
1
1.
Fuentes  William  Wichtmann  Torsten  Gil  Melany  Lascarro  Carlos 《Acta Geotechnica》2020,15(6):1513-1531
Acta Geotechnica - The hypoplastic model for sands proposed by Wolffersdorff (Mech Cohes Frict Mater 1: 251–271, 1996) combined with the intergranular strain anisotropy by Fuentes and...  相似文献   
2.
We use a multi-proxy (n = 11) paleolimnological approach on deep-water sediment from eastern Lake Ontario to characterize both long- and short-term regional climate change over the past ~10,000 calendar years. Proxies included % total organic matter, % total carbonate, magnetic susceptibility, C/N ratios, % organic carbon, % total nitrogen, % biogenic silica and 18O and 13C of carbonate, as well as 13C and 15N of bulk organic matter. There is a marked shift in most proxies at ~9.4 ka which defines the start of Holocene warmth in this region. Prior to this, the area was influenced by the post-Younger Dryas cold/wet interval, controlled by a southward displacement of the polar front jet stream, when many proxies were at their minimum. The Hypsithermal interval (~9.4–5.3 ka) was the warmest and wettest of the Holocene due to a long-term increase in summer insolation. The Hypsithermal, however, was interrupted by two cold climates; the 8.2 ka event (~8.4–8.0 ka) and the Nipissing Rise (~6.8–5.0 ka), both of which are linked to a reduction in thermohaline circulation and northward oceanic heat transport. The Neoglacial interval (~5.3 ka to ~1850 AD), driven by a long-term decrease in summer insolation, was cooler and dryer, but more stable, than the Hypsithermal. The short Historic interval (post ~1850 AD) was characterized by some of the largest amplitude and most abrupt anomalies of the past 10,000 years, due to intense anthropogenic activity, when a number of proxies reached unprecedented values.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号