首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
地球物理   1篇
地质学   4篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
Nabatian  Ghasem  Li  Xian-Hua  Wan  Bo  Honarmand  Maryam 《Mineralogy and Petrology》2018,112(4):481-500
Mineralogy and Petrology - The geochemical and isotopic investigations were provided on the Upper Eocene Senj mafic intrusion and Mo-Cu mineralization to better understand the tectono-magmatic...  相似文献   
2.
The Sorkhe‐Dizaj iron oxide–apatite deposit in the Cenozoic Alborz‐Azarbaijan magmatic belt, NW Iran, is hosted mainly by a Late Eocene to Oligocene quartz‐monzonitic body, and subordinately in the Eocene volcanic and volcanoclastic sequences. The Sorkhe‐Dizaj intrusive body is an I‐type granitoid of the calc‐alkaline series. Mineralization is associated with actinolization, K‐feldspar, sericitic, propylitic, and tourmaline alteration types. The orebodies are massive, banded, stockwork, and breccia in shape and occur mainly along the fault zones within the quartz‐monzonitic intrusion, volcanic, and volcanoclastic rocks. Ore minerals dominantly comprise magnetite, apatite, and monazite, as well as minor amounts of chalcopyrite, bornite, and pyrite. Four major paragenetic stages are discriminated in the mineralization including early, oxide, sulfide, and late stage. The Sorkhe‐Dizaj deposit is similar in the aspects of host rock lithology, alteration, and mineralogy to the Kiruna‐type deposits associated with minor Cu sulfide minerals. Spatial and temporal association of the mineralization with the Late Eocene–Early Oligocene quartz‐monzonite intrusive body suggests that the ore fluid was probably related to magmatic activity.  相似文献   
3.
The Niyasar plutonic complex, one of the Cenozoic magmatic assemblages in the Urumieh‐Dokhtar magmatic belt, was the subject of detailed petrographic and mineralogical investigations. The Niyasar magmatic complex is composed of Eocene to Oligocene mafic rocks and Miocene granitoids. Eleven samples, representing the major rock units in the Niyasar magmatic complex and contact aureole were chosen for mineral chemical studies and for estimation of the pressure, temperature, and oxygen fugacity conditions of mineral crystallization during emplacement of various magmatic bodies. The analyzed samples are composed of varying proportions of quartz, plagioclase, K‐feldspar, hornblende, biotite, titanite, magnetite, apatite, zircon, garnet, and clinopyroxene. Application of the Al‐in‐hornblende barometer indicates pressures of around 0.2 to 0.4 kbar for the Eocene–Oligocene mafic bodies and around 0.5 to 1.7 kbar for the Miocene granitoids. Hornblende‐plagioclase thermometry yields relatively low temperatures (661–780 °C), which probably reflect late stage re‐equilibration of these minerals. The assemblage titanite–magnetite–quartz as well as hornblende composition were used to constrain the oxygen fugacity and H2O content during the crystallization of the parent magmas in the Miocene plutons. The results show that the Miocene granitoids crystallized from magmas with relatively high oxygen fugacity and high H2O content (~5 wt% H2O). The Miocene granitoids show similar range of oxygen fugacity, H2O contents and mineral chemical compositions, which indicate a common source for their magmas. Although the crystallization pressures of the Miocene plutons discriminate various categories of plutonic bodies emplaced at depths of about 5.7–6.5 km (Marfioun pluton), about 4.2 km (Ghalhar pluton) and 1.9–2.3 km (Poudalg pluton), they were later uplifted to the same level by vertical displacement of faults. The emplacement depths of the Niyasar plutons suggest that the central part of the Urumieh‐Dokhtar magmatic belt has experienced an uplift rate of ca. 0.25–0.4 mm/yr from the Miocene onwards.  相似文献   
4.
Iron oxide–apatite deposits are present in Upper Eocene pyroxene-quartz monzonitic rocks of the Zanjan district, northwestern Iran. Mineralization occurred in five stages: (1) deposition of disseminated magnetite and apatite in the host rock; (2) mineralization of massive and banded magnetite ores in veins and stockwork associated with minor brecciation and calcic alteration of host rocks; (3) deposition of sulfide ores together with potassic alteration; (4) formation of quartz and carbonate veins and sericite, chlorite, epidote, silica, carbonate, and tourmaline alteration; and (5) supergene alteration and weathering. U–Pb dating of monazite inclusions in the apatite indicates an age of 39.99?±?0.24 Ma, which is nearly coeval with the time of emplacement of the host quartz monzonite, supporting the genetic connection. Fluid inclusions in the apatite have homogenization temperatures of about 300 °C and oxygen isotopic compositions of the magnetite support precipitation from magmatic fluids. Late-stage quartz resulted from the introduction of a cooler, less saline, and isotopically depleted fluid. The iron oxide–apatite deposits in the Tarom area of the Zanjan district are typical of a magmatic–hydrothermal origin and are similar to the Kiruna-type deposits with respect to mineral assemblages, fabric and structure of the iron ores, occurrence of the ore bodies, and wall rock alteration.  相似文献   
5.
Mineralogy and Petrology - The Lower Permian Hasan-Robat syenogranite occurs as a single pluton and intruded the Upper Carboniferous–Lower Permian sandstones and dolomitic limestones in the...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号