首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2021年   1篇
  2017年   1篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
Madu  Ignatius A.  Nwankwo  Cletus Famous 《GeoJournal》2021,86(6):2691-2707
GeoJournal - Climate change is recognised among the drivers of conflicts in developing regions but the growing studies on climate change–violent conflict nexus in Africa have paid little...  相似文献   
2.
Understanding the thermal distribution within the crust and rheology of the earth’s lithosphere requires the knowledge of the Depth to the Bottom of Magnetic Sources (DBMS). This depth is an important parameter in this regard, which can be derived from aeromagnetic data and can be used as a representation for temperature at depth where heat flow values can be evaluated. In this work, high-resolution aeromagnetic (HRAM) data of part of Chad Basin (covering about 80% of the entire basin), an area bounded by eastings 769,000 and 1,049,900 mE and northings 1,200,000 and 1,500,000 mN, were divided into 25 overlapping blocks and each block was analyzed using spectral fractal analysis method. The spectral analysis method was used to obtain the Depth to the Top of Magnetic Source (DTMS), centroid depth, and DBMS. From the calculated DBMS, the geothermal gradient and heat flow parameters were evaluated and the result obtained shows that DBMS varies between 18.18 and 43.64 km. Also the geothermal gradient was found to be varying between 13.29 and 31.90 °C/km and heat flow parameters vary between 33.23 and 79.76 mW/m2, respectively. The heat distribution of this area is one of the key parameters responsible for various geodynamic processes; therefore, this work is important for numerically understanding the thermal distribution in Chad Basin, Nigeria since rock rheologies depend on temperature, which is a function of depth.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号