首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   1篇
地质学   2篇
  2012年   1篇
  2011年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
http://www.sciencedirect.com/science/article/pii/S1674987111000405   总被引:1,自引:0,他引:1  
This study has focused on the processes of soil degradation and chemical element concentration in tea-growing regions of Rwanda, Africa. Soil degradation accelerated by erosion is caused not only by topography but also by human activities. This soil degradation involves both the physical loss and reduction in the amount of topsoil associated with nutrient decline. Soil samples were collected from eleven tropical zones in Rwanda and from variable depth within each collecting site. Of these, Samples from three locations in each zone were analyzed in the laboratory, with the result that the pH of all soil samples is shown to be less than 5 (pH < 5) with a general average of 4.4. The elements such as iron (Fe), copper (Cu), manganese (Mn), and zinc (Zn) are present in high concentration levels. In contrast calcium (Ca) and sodium (Na) are present at low-level concentrations and carbon (C) was found in minimal concentrations. In addition, elements derived from fertilizers, such as nitrogen (N), phosphorous (P), and potassium (K) which is also from minerals such as feldspar, are also present in low-level concentrations. The results indicate that the soil in certain Rwandan tea plantations is acidic and that this level of pH may help explain, in addition to natural factors, the deficiency of some elements such as Ca, Mg, P and N. The use of chemical fertilizers, land use system and the location of fields relative to household plots are also considered to help explain why tea plantation soils are typically degraded.  相似文献   
2.
Field studies were carried out in Tarim River Basin, Northwest China for analysis of snowmelt model for flood forecast for a river in arid zone. Snow is a major source for water availability in arid zone of Northwest China where 50% of snow cover withdrew by sublimation during dry and cold climatic condition. The analysis of weekly forecast of daily discharges was helped by the temperature index model, ARIMA model for temperature and flow, D-IUH runoff model and D-IUH model estimation where the temperature forecast was used as driving variable; the numerical simulations were carried out using SUSA® software for testing the sensitivity of the D-IUH to the input values of the parameter and an analysis of the forecast results against the set of input parameters resulted in a determination coefficient R 2 = 0.5. The standard deviation was 3.28 and the mean for the Tarim River was 5.37 (mm d?1) implying that the forecasted data is in strong agreement with the observed data. The combination of methods is better useful for calculation in order to avoid errors of appreciation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号