首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
地球物理   1篇
地质学   14篇
海洋学   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2013年   3篇
  2010年   1篇
  2007年   2篇
  2006年   3篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Baranevskoy金-银矿床产于巴尔喀什火山的火山口,该火山坐落在堪察加中部矿区东南部。本文基于矿物学原理和流体包裹体数据分析探讨了Baranevskoy金-银矿床的成矿环境及其物理化学条件。Baranevskoy金-银矿床的围岩为中新世—上新世的安山岩和玄武岩。热液蚀变活动随深度逐渐变化,从而可以进一步划分出最深部的石英带、中部的石英-绢云母(明矾石)-黄铁矿-铁钛氧化物带及其伴生的石英-绢云母-伊利石-黄铁矿矿物组合和浅部的石英-冰长石-水云母-黏土矿物-碳酸盐岩带。成矿早期存在密集浸染的铜矿化,主要矿石矿物有黄铜矿、斑铜矿、砷黝铜矿-黝铜矿,并在Rhzavaya矿脉中存在少量的自然金。其中砷黝铜矿-黝铜矿系列以砷黝铜矿和黝铜矿两个端员作为代表,且以黝铜矿为主。成矿后期产出代表晚期金-银矿化的自然金、黄铁矿、黄铜矿、闪锌矿、方铅矿、碲化物和硫酸盐等标志性矿物。早期铜矿化(第一期)被认为是中硫阶段,紧随其后的为低硫型金-银矿化(第二期和第三期)。金从第一期到第三期都有沉淀。经研究发现,自然金也赋存于变质围岩的岩石裂隙内。早期的自然金相对富银,其中金的摩尔分数为59%~65%,低于后期(第二、第三期)自然金中金的摩尔分数(64%~72%)。流体包裹体显微测温结果显示,位于中部(Central)矿脉的包裹体均一温度为190~280 ℃,Rzhavaya矿脉的包裹体为190~240 ℃,产出自然金的蚀变围岩中石英的包裹体温度为230~310 ℃。包裹体总体表现出低盐度(0.9%~2.4% NaCleq)特征,推测存在大气水的混入。  相似文献   
2.
This paper presents the results of the δ18O study of the precious opals from Primor’e (Raduzhnoe deposit), Australia, and Ethiopia and the modern opals from the hydrotherms of the Mendeleev Volcano (Kunashir Island, Kuril Islands). It is established that the oxygen isotope ratio in opals may serve as a criterion for the estimation of their formation temperature. The low-temperature sedimentary opals are relatively enriched in the heavy oxygen isotope independently of the sedimentary or volcanic host rocks. Examples are the Australian and Slovakian opals of the A-type. The hydrothermal opals are enriched in the light oxygen isotope, which depends on the precipitation temperature. The higher the temperature, the lighter the oxygen isotope ratio of the precipitating opal is and the closer it is to that of the hydrothermal fluid.  相似文献   
3.
Mineralogic studies of major ore minerals and fluid inclusion analysis in gangue quartz were carried out for the for the two largest veins, the Aginskoe and Surprise, in the Late Miocene Aginskoe Au–Ag–Te deposit in central Kamchatka, Russia. The veins consist of quartz–adularia–calcite gangue, which are hosted by Late Miocene andesitic and basaltic rocks of the Alnei Formation. The major ore minerals in these veins are native gold, altaite, petzite, hessite, calaverite, sphalerite, and chalcopyrite. Minor and trace minerals are pyrite, galena, and acanthine. Primary gold occurs as free grains, inclusions in sulfides, and constituent in tellurides. Secondary gold is present in form of native mustard gold that usually occur in Fe‐hydroxides and accumulates on the decomposed primary Au‐bearing tellurides such as calaverite, krennerite, and sylvanite. K–Ar dating on vein adularia yielded age of mineralization 7.1–6.9 Ma. Mineralization of the deposit is divided into barren massive quartz (stage I), Au–Ag–Te mineralization occurring in quartz‐adularia‐clays banded ore (Stage II), intensive brecciation (Stage III), post‐ore coarse amethyst (Stage IV), carbonate (Stage V), and supergene stages (Stage VI). In the supergene stage various secondary minerals, including rare bilibinskite, bogdanovite, bessmertnovite metallic alloys, secondary gold, and various oxides, formed under intensely oxidized conditions. Despite heavy oxidation of the ores in the deposit, Te and S fugacities are estimated as Stage II tellurides precipitated at the log f Te2 values ?9 and at log fS2 ?13 based on the chemical compositions of hypogene tellurides and sphalerite. Homogenization temperature of fluid inclusions in quartz broadly ranges from 200 to 300°C. Ore texture, fluid inclusions, gangue, and vein mineral assemblages indicate that the Aginskoe deposit is a low‐sulfidation (quartz–adularia–sericite) vein system.  相似文献   
4.
In Kamchatka, Central Koryak, Central Kamchatka and East Kamchatka metallogenic belts are distributed from northwest to southeast. K–Ar age, sulfur isotopic composition of sulfide minerals, and bulk chemical compositions of ores were analyzed for 13 ore deposits including hydrothermal gold‐silver and base metal, in order to elucidate the geological time periods of ore formation, relationship to regional volcanic belts, type of mineralization, and origin of sulfur in sulfides. The dating yielded ore‐forming ages of 41 Ma for the Ametistovoe deposit in the Central Koryak, 17.1 Ma for the Zolotoe deposit and 6.9 Ma for the Aginskoe deposit in the Central Kamchatka, and 7.4 Ma for the Porozhistoe deposit and 5.1 Ma for the Vilyuchinskoe deposit in the East Kamchatka metallogenic belt. The data combined with previous data of ore‐forming ages indicate that the time periods of ore formation in these metallogenic belts become young towards the southeast. The averaged δ34SCDT of sulfides are ?2.8‰ for the Ametistovoe deposit in Central Koryak, ?1.8‰ to +2.0‰ (av. ?0.1‰) for the Zolotoe, Aginskoe, Baranievskoe and Ozernovskoe deposits in Central Kamchatka, and ?0.7 to +3.8‰ (av. +1.7‰) for Bolshe‐Bannoe, Kumroch, Vilyuchinskoe, Bystrinskoe, Asachinskoe, Rodnikovoe, and Mutnovskoe deposits in East Kamchatka. The negative δ34SCDT value from the Ametistovoe deposit in Central Koryak is ascribed to the contamination of 32S‐enriched sedimentary sulfur in the Ukelayat‐Lesnaya River trough of basement rock. Comparison of the sulfur isotope compositions of the mineral deposits shows similarity between the Central Koryak and Magadan metallogenic belts, and East Kamchatka and Kuril Islands belts. The Central Kamchatka belt is intermediate between these two groups in term of sulfur isotopic composition.  相似文献   
5.
Abstract. The Mutnovskoe deposit located in the Porozhisto‐Asachinskaya metallogenic province of South Kamchatka, Russia, is a polymetallic vein and Au‐Ag quartz vein associated type of hydrothermal deposit. The Mutnovskoe deposit is located inside a paleo‐caldera structure at the center of the Mutnovsko‐Asachinskaya geothermal field of Pliocene ‐ Quaternary age, where active gold deposition is identified in hot spring precipitate. The Mutnovskoe deposit is subdivided into the north flank, the central flank and the south flank based on the vein distributions and mineral parageneses. The mineralized vein system is oriented N‐S hosted in diorite ‐ gabbroic diorite stock, volcanic rocks and sedimentary rocks of Miocene ‐ Pleistocene age. The mineralization stage I (polymetallic vein) mainly in the central and the south flanks is Zn‐Pb‐Cu‐Au‐Ag contained in sphalerite, galena and tetrahedrite‐tennantite group mineral. The stage II (Au‐Ag quartz vein) occurs in the north and the central flanks. The stage III (Mn‐sulfide and Mn‐Ca‐carbonate vein) occurs in the whole deposit area. Stage II is the typical Au‐Ag quartz‐adularia vein of low‐sulfidation type. Stage III is alabandite‐rhodochrosite‐quartz‐calcite vein. The K‐Ar ages are 1.3±0.1 Ma for stage I sericite in alteration zone, and 0.7±0.1 Ma for the stage II adularia in mineralized vein. Based on the fluid inclusion study, range of ore forming temperature of the Mutnovskoe deposit is 200 to 260d?C (av. 230d?C). Salinities of fluid inclusions indicate 2.2 to 5.7 wt% NaCl in sphalerite and 0.8 to 3.3 wt% NaCl in quartz for the stage I. Mineral paragenesis of the polymetallic vein (stage I) is characterized by a district zoning of tennantite and Cd‐rich sphalerite in the south flank and tetrahedrite and Mn‐rich sphalerite in the central flank, which is due to the fractional crystallizations of ore‐forming fluid. Depositional condition of the low sulfidation state is inferred for the Mutnovskoe deposit, where the polymetallic vein of the south flank is in relatively higher sulfidation state than the central flank.  相似文献   
6.
7.
Abstract. The Rodnikovoe gold deposit situated in a presently active hydrothermal system located north of the Mutnovsko-Asachinskaya geothermal area in southern Kamchatka, Far Eastern Russia, consists of typical low-sulfidation quartz-adularia veins in a host rock of diorite. The age of the mineralization was dated by the K-Ar method as 0.9 to 1.1 Ma based on adular-ia collected from the veins. Representative ore minerals in the deposit are electrum, argentite, aguilarite, polybasite, pearceite and lenaite. Dominant alteration minerals are adularia, α-cristobalite, chlorite, illite and kaolinite. Hydrothermal solutions of neutral pH were responsible for the mineralization, which is divided into six stages defined by tectonic boundaries. Gold mineralization occurred in stages I and III. Hydrothermal brecciation occurred during stages III, IV and VI. Stages II, IV, V and VI were barren. The estimated ore formation temperature based on a fluid inclusion study is 150 to 250 °C at a depth of approximately 170 m below the paleo-water table. Boiling of hydrothermal fluids is hypothesized as the cause of the intermittent deposition of gold ore. The sulfur and oxygen fugacities during the deposition of anhydrite prior to the hydrothermal brecciation were higher than those during the gold mineralization stages. The occurrence in the hydrothermal breccia of fragments of high grade Au-Ag and polymetallic ores suggests that higher grade mineralization of these metal ores might have occurred in a deeper portion of the deposit.  相似文献   
8.
Subsurface video footage can be used as a successful identification tool for various marine organisms; however, processing of such information has proven challenging. This study tests the use of automated software to assist with photo-identification of the great white shark Carcharodon carcharias in the region of Gansbaai, on the south coast of South Africa. A subsurface photo catalogue was created from underwater video footage. Single individuals were identified by using pigmentation patterns. From this catalogue, two images of the head for each individual were inserted into automated contour-recognition software (Interactive Individual Identification System Beta Contour 3.0). One image was used to search the database, the other served as a reference image. Identification was made by means of a contour, assigned using the software to the irregular border of grey and white on the shark's head. In total, 90 different contours were processed. The output provided ranks, where the first match would be a direct identification of the individual. The method proved to be accurate, in particular for high-quality images where 88.24% and 94.12%, respectively, were identified by two independent analysts as first match, and with all individuals identified within the top 10 matches. The inclusion of metadata improved accuracy and precision, allowing identification of even low-quality images.  相似文献   
9.
We consider the mineralogical and geochemical features of the rocks of the Inagli dunite-clinopyroxenite-shonkinite massif with platinum-chromite and unique jewelry Cr-diopside mineralization, which is a reference object of concentric zonal complexes. The massif rocks, from dunites to pulaskites, including peridotites, clinopyroxenites, shonkinites, and melanocratic alkali syenites, form a single continuous comagmatic series. This is confirmed by a clear dependence of the compositions of olivine, pyroxene, phlogopites, and Cr-spinels on the MgO content of the rocks and on the behavior of trace elements in them. The similar compositions of pyroxenes and trace-element patterns of clinopyroxenite rocks and Cr-diopsidite veins indicate a genetic similarity of these rocks. The age and mineralogical and geochemical compositions of the rocks and the geologic and morphological features of the intrusion prove that the Inagli massif formed from high-K picritoid melts, which underwent gradual decompression solidification during the ascent and formed a cylindrical diapir-like body at the subsurface level in the Early Cretaceous. The new portions of differentiates supplied from the lower horizons of the magma column determined the complex composition of the massif: It has a concentric zonal structure cut by numerous radial-circular vein bodies of pegmatites and pure anchimonomineral rocks (Cr-diopsidites), in places, of jewelry quality.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号