首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地球物理   6篇
地质学   2篇
  2020年   1篇
  2018年   1篇
  2011年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1993年   2篇
排序方式: 共有8条查询结果,搜索用时 265 毫秒
1
1.
Uddin  Md Shahab  Warnitchai  Pennung 《Natural Hazards》2020,102(3):1475-1496
Natural Hazards - Infrastructures are the most important aspect of any urban system. Properly planned infrastructures are critical for ensuring services and protecting an urban system from...  相似文献   
2.
Active tendon control of cable-stayed bridges subject to a vertical sinusoidal force is experimentally and analytically studied. Emphasis is placed on the effects of linear and non-linear internal resonances on the control (due to the presence of the cable vibration). A simple cable-supported cantilever beam is used as a model. It is found that active tendon control is very effective in vertical girder motion with small cable vibration (girder dominated motion), whereas it is not effective in vertical girder motion with large cable vibration (cable dominated motion). Analytical prediction is very satisfactory except for the latter case.  相似文献   
3.
Observation of human-induced large-amplitude lateral vibration of an actual pedestrian bridge in an extremely congested condition is reported. Walking motions of pedestrians recorded by a video camera are analysed. It is found that walking among 20 per cent or more of the pedestrians on the bridge was synchronized to the girder lateral vibration. With this synchronization, the total lateral force from the pedestrians to the girder is evidently increased and it acts as a resonant force on the girder lateral vibration.  相似文献   
4.
Probabilistic seismic hazard assessment for Thailand   总被引:3,自引:1,他引:2  
A set of probabilistic seismic hazard maps for Thailand has been derived using procedures developed for the latest US National Seismic Hazard Maps. In contrast to earlier hazard maps for this region, which are mostly computed using seismic source zone delineations, the presented maps are based on the combination of smoothed gridded seismicity, crustal-fault, and subduction source models. Thailand’s composite earthquake catalogue is revisited and expanded, covering a study area limited by 0°–30°N Latitude and 88°–110°E Longitude and the instrumental period from 1912 to 2007. The long-term slip rates and estimates of earthquake size from paleoseismological studies are incorporated through a crustal fault source model. Furthermore, the subduction source model is used to model the megathrust Sunda subduction zones, with variable characteristics along the strike of the faults. Epistemic uncertainty is taken into consideration by the logic tree framework incorporating basic quantities, such as different source modelling, maximum cut-off magnitudes and ground motion prediction equations. The ground motion hazard map is presented over a 10 km grid in terms of peak ground acceleration and spectral acceleration at 0.2, 1.0, and 2.0 undamped natural periods and a 5% critical damping ratio for 10 and 2% probabilities of exceedance in 50 years. The presented maps give expected ground motions that are based on more extensive data sources than applied in the development of previous maps. The main findings are that northern and western Thailand are subjected to the highest hazard. The largest contributors to short- and long-period ground motion hazard in the Bangkok region are from the nearby active faults and Sunda subduction zones, respectively.  相似文献   
5.
A tropical cyclone (TC) precipitation prediction scheme has been developed based on the physical quantities of the NCEP/NCAR reanalysis data as potential predictors and using fuzzy neural network (FNN) model. TC precipitation samples from 172 tropical cyclones (TCs) affecting Guangxi, China, spanning 1980–2015 are used for model development. The FNN model input is constructed from potential predictors by employing both a stepwise regression method (SRM) and a locally linear embedding (LLE) algorithm. The LLE algorithm is capable of finding meaningful low-dimensional architectures hidden in their nonlinear high-dimensional data space and separating the underlying factors. In this scheme, the newly developed model, which is termed the FNN–LLE model, is used for daily TC precipitation prediction from 20:00 (Beijing Time, or BT) of the previous day to 20:00 BT of the current day at 89 stations covering Guangxi, China. Using identical modeling samples and independent samples, predictions of the FNN–LLE model are compared with the widely used SRM and interpolation method using the fine-mesh data of the European Centre for Medium-Range Weather Forecasts (ECMWF) in terms of the performance of TC rainfall prediction at 89 stations in Guangxi. The root-mean-square error (RMSE), bias, and equitable threat score (ETS) results were employed to assess the predicted outcomes. Results show that the FNN–LLE model is superior to the interpolation method by ECMWF and SRM for TC precipitation prediction with RMSE values of 21.94, 24.07, and 25.22 in FNN–LLE model, interpolation method by ECMWF and SRM, respectively. Moreover, FNN–LLE model having average bias and ETS values close to 1.0 gave better predictions than did the interpolation method by ECMWF and SRM.  相似文献   
6.
A new method to design multiple tuned mass dampers (multiple TMDs) for minimizing excessive vibration of structures has been developed using a numerical optimizer. It is a very powerful method by which a large number of design variables can be effectively handled without imposing any restriction before the analysis. Its framework is highly flexible and can be easily extended to general structures with different combinations of loading conditions and target controlled quantities. The method has been used to design multiple TMDs for SDOF structures subjected to wide‐band excitation. Some novel results have been obtained. To reduce displacement response of the structure, the optimally designed multiple TMDs have distributed natural frequencies and distinct damping ratios at low damping level. The obtained optimal configuration of TMDs was different from the earlier analytical solutions and was proved to be the most effective. A robustness design of multiple TMDs has also been presented. Robustness is defined as the ability of TMDs to function properly despite the presence of uncertainties in the parameters of the system. Numerical examples of minimizing acceleration structural response have been given where the system parameters are uncertain and are modeled as independent normal variates. It was found that, in case of uncertainties in the structural properties, increasing the TMD damping ratios along with expanding the TMD frequency range make the system more robust. Meanwhile, if TMD parameters themselves are uncertain, it is necessary to design TMDs for higher damping ratios and a narrower frequency range. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
7.
Bangkok, the capital city of Thailand, is located at a remote distance from seismic sources. However, it has a substantial risk from these distant earthquakes due to the ability of the underlying soft clay to amplify ground motions. It is therefore imperative to conduct a detailed seismic hazard assessment of the area. Seismic microzonation of big cities, like Bangkok, provides a basis for site‐specific hazard analysis, which can assist in systematic earthquake mitigation programs. In this study, a seismic microzonation map for the greater Bangkok area is constructed using microtremor observations. Microtremor observations were carried out at more than 150 sites in the greater Bangkok area. The predominant periods of the ground were determined from the horizontal‐to‐vertical (H/V) spectral ratio technique. A microzonation map was then developed for the greater Bangkok area based on the observations. Moreover, the transfer functions were calculated for the soil profile at eight sites, using the computer program SHAKE91, to validate the results from the microtremor analysis. The areas near the Gulf of Thailand, underlaid by a thick soft clay layer, were found to have long natural periods ranging from 0.8s to 1.2s. However, the areas outside the lower central plain have shorter predominant periods of less than 0.4s. The study shows that there is a great possibility of long‐period ground vibration in Bangkok, especially in the areas near the Gulf of Thailand. This may have severe effects on long‐period structures, such as high‐rise buildings and long‐span bridges. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
8.
This paper presents an application of multiple tuned mass dampers (MTMDs) with non‐linear damping devices to suppress man‐induced vibrations of a 34m long pedestrian bridge. The damping force generated by each of these damping devices is simply a drag force from liquid acting on an immersed section. The quadratic non‐linear property of these devices was directly determined from free vibration tests of a simple laboratory set‐up. Dynamic models of the bridge and pedestrian loads were constructed for numerical investigation based on field measurement data. The control effectiveness of non‐linear MTMDs was examined along with its sensitivity against estimation errors in the bridge's natural frequency and magnitude of pedestrian load. The numerical results indicated that the optimum non‐linear MTMD system was as effective and robust as its linear counterpart. Then, a six‐unit non‐linear MTMD system was designed, constructed, and installed on the bridge. Field measurements after the installation confirmed the effectiveness of non‐linear MTMDs, and the measurement results were in good agreement with numerical predictions. After the installation, the average damping ratio of the bridge was raised from 0.005 to 0.036 and the maximum bridge accelerations measured during walking tests were reduced from about 0.80–1.30 ms?2 to 0.27–0.40 ms?2, which were within an acceptable range. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号