首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
地质学   1篇
天文学   8篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Abstract— Available evidence strongly suggests that the HED (howardite, eucrite, diogenite) meteorites are samples of asteroid 4 Vesta. Abundances of the moderately siderophile elements (Ni, Co, Mo, W and P) in the HED mantle indicate that the parent body may have been completely molten during its early history. During cooling of a chondritic composition magma ocean, equilibrium crystallization is fostered by the suspension of crystals in a convecting magma ocean until the crystal fraction reaches a critical value near 0.80, when the convective system freezes and melts segregate from crystals by gravitational forces. The extruded liquids are similar in composition to Main Group and Stannern trend eucrites, and the last pyroxenes to precipitate out of this ocean (before convective lockup) span the compositional range of the diogenites. Subsequent fractional crystallization of a Main Group eucrite liquid, which has been isolated as a body of magma, produces the Nuevo Laredo trend and the cumulate eucrites. The predicted cumulate mineral compositions are in close agreement with phase compositions analyzed in the cumulate eucrites. Thus, eucrites and diogenites are shown to have formed as part of a simple and continuous crystallization sequence starting with a magma ocean environment on an asteroidal size parent body that is consistent with Vesta.  相似文献   
2.
3.
Abstract– In this edition of The Meteoritical Bulletin, a total of 506 newly approved meteorite names with their relevant data are reported. These include 354 from northwest Africa, 31 from the Americas, 15 from Antarctica (Koreamet), 85 from Asia, 20 from Australia, and 1 from Europe. Among these meteorites are 2 falls, Grimsby (Canada) and Santa Lucia (2008) (Argentina). Also described are a CM with low degree of alteration, new ungrouped chondrites and achondrites, and 4 Martian meteorites.  相似文献   
4.
5.
Abstract— Queen Alexandra Range (QUE) 93148 is a small (1.1 g) olivine‐rich achondrite (mg 86) that contains variable amounts of orthopyroxene (mg 87) and kamacite (6.7 wt% Ni), with minor augite. Olivine in QUE 93148 contains an unusual suite of inclusions: (1) 5 × 100 μm sized lamellae with a CaO‐ and Cr2O3‐rich (~10 and 22 wt%, respectively) composition that may represent a submicrometer‐scale intergrowth of chromite and pyroxene(s); (2) 75 × 500 μm sized lamellar symplectites composed of chromite and two pyroxenes, with minor metal; (3) 15–20 μm sized, irregularly‐shaped symplectites composed of chromite and pyroxene(s); (4) 100–150 μm sized, elliptical inclusions composed of chromite, two pyroxenes, metal, troilite, and rare whitlockite. Type 1, 2, and 3 inclusions probably formed by exsolution from the host olivine during slow cooling, whereas type 4 more likely resulted from early entrapment of silicate and metallic melts followed by closed‐system oxidation. Queen Alexandra Range 93148 can be distinguished from most other olivine‐rich achondrites (ureilites, winonaites, lodranites, acapulcoites, brachinites, Eagle‐Station‐type pallasites, and pyroxene pallasites), as well as from mesosiderites, by some or all of the following properties: O‐isotopic composition, Fe‐Mn‐Mg relations of olivine, CaO and Cr2O3 contents of olivine, orthopyroxene compositions, molar Cr/(Cr + Al) ratios of chromite, metal composition, texture, and the presence of the inclusions. In terms of many of these properties, it shows an affinity to main‐group pallasites. Nevertheless, it cannot be identified as belonging to this group. Meteorite QUE 93148 appears to be a unique achondrite. Possibly it should be considered to be a pyroxene pallasite that is genetically related to main‐group pallasites. Alternatively, it may be derived from the mantle of the pallasite (howardite‐eucrite‐diogenite?) parent body.  相似文献   
6.
7.
The thermal history of Mars during accretion and differentiation is important for understanding some fundamental aspects of its evolution such as crust formation, mantle geochemistry, chronology, volatile loss and interior degassing, and atmospheric development. In light of data from new Martian meteorites and exploration rovers, we have made a new estimate of Martian mantle siderophile element depletions. New high pressure and temperature metal–silicate experimental partitioning data and expressions are also available. Using these new constraints, we consider the conditions under which the Martian mantle may have equilibrated with metallic liquid. The resulting conditions that best satisfy six siderophile elements—Ni, Co, W, Mo, P, and Ga—and are consistent with the solidus and liquidus of the Martian mantle phase diagram are a pressure of 14 ± 3 GPa and temperature of 2100 ± 200 K. The Martian mantle depletions of Cr and V are also consistent with metal–silicate equilibration in this pressure and temperature range if deep mantle silicate phases are also taken into account. The results are not consistent with either metal–silicate equilibrium at the surface or at the current‐day Martian core–mantle boundary. Recent measurements and modeling have concluded that deep (~17 GPa or 1350 km) mantle melting is required to explain isotopic data for Martian meteorites and the nature of differentiation into core, mantle, and crust. This is in general agreement with our estimates of the conditions of Martian core formation based on siderophile elements that result in an intermediate depth magma ocean scenario for metal–silicate equilibrium.  相似文献   
8.
The Plio-Quaternary Ayutla and Tapalpa volcanic fields in thevolcanic front of the western Mexican Volcanic Belt (WMVB) containa wide variety of alkaline volcanic rocks, rather than onlycalc-alkaline rocks as found in many continental arcs. Thereare three principal rock series in this region: an intraplatealkaline series (alkali basalts and hawaiites), a potassic series(lamprophyres and trachylavas), and a calc-alkaline series.Phlogopite-clinopyroxenite and hornblende-gabbro cumulate xenolithsfrom an augite minette lava flow have orthocumulate textures.The phlogopite-clinopyroxenite xenoliths also contain apatiteand titanomagnetite and probably formed by accumulation of mineralsfractionated from an augite minette more primitive than thehost. The intraplate alkaline series is probably generated bydecompression melting of asthenospheric mantle as a result ofcorner flow in the mantle wedge beneath the arc. Alkaline magmasmay be common in the WMVB as a result of prior metasomatism(during Tertiary Sierra Madre Occidental magmatism) of the Mexicansub-arc mantle. Generation of the more evolved andesites anddacites of the calc-alkaline series is due to either combinedassimilation and fractional crystallization (AFC) or magma mixing.The preponderance of alkaline and hydrous lavas in this regiondemonstrates that these lava types are the norm, rather thanthe exception in western Mexico, and occur in regions that arenot necessarily associated with active rifting. KEY WORDS: arc basalt; subduction; alkali basalt; minette; hawaiite; metasomatism  相似文献   
9.
Abstract— Pyroxene structural data, along with analyses of titanomagnetite, fayalite and mesostasis of the new nakhlite Miller Range (MIL) 03346, define equilibration near 1 bar, 1100 °C, and oxygen fugacity near the FMQ buffer. There is a clear progression of oxygen fugacity (fO2) in Martian meteorites from reduced Allan Hills (ALH) 84001 to intermediate shergottites to oxidized nakhlites. This trend can be explained by polybaric graphite‐CO‐CO2 equilibria in the Martian mantle. Shergottites would have formed at pressures between 1.2 and 3.0 GPa, and nakhlite parent liquids formed at pressures >3.0 GPa, consistent with geochemical and petrologic data for the shergottites and nahklites. Carbon buffering in the Martian mantle could be responsible for variation in fO2 in Martian meteorites (rather than assimilation or crustal interaction), as well as C‐H‐O fluids that could be the source of ˜30 ppb CH4 detected by recent spacecraft missions. The conundrum of an oxidized current mantle and basalts, but reduced early mantle during core‐mantle equilibrium exists for both the Earth and Mars. A polybaric buffering role for graphite can explain this discrepancy for Mars, and thus it may not be necessary to have an oxidation mechanism like the dissociation of MgFe‐perovskite to account for the oxidized terrestrial mantle.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号