首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地质学   4篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2008年   1篇
排序方式: 共有4条查询结果,搜索用时 500 毫秒
1
1.
The ‘forgotten fjords’ and ‘deserted inlets’ of NE‐Iceland, in the region between Borgarfjörður Eystri and Loðmundarfjörður, are not only prominent because of their pristine landscape, their alleged elfin settlements, and the puffins that breed in the harbour, but also for their magnificent geology. From a geological point of view, the area may hold Iceland's best kept geological secret. The greater Borgarfjörður Eystri area hosts mountain chains that consist of voluminous and colourful silicic rocks that are concentrated within a surprisingly small area (Fig. 1 ), and that represent the second‐most voluminous occurrence of silicic rocks in the whole of Iceland. In particular, the presence of unusually large volumes of ignimbrite sheets documents extremely violent eruptions during the Neogene, which is atypical for this geotectonic setting. As a group of geoscientists from Uppsala University (Sweden) and the Nordic Volcanological Center (NordVulk, Iceland) we set out to explore this remote place, with the aim of collecting material that may allow us to unravel the petrogenesis of these large volumes of silicic rocks. This effort could provide an answer to a long‐standing petrological dilemma; the question of how silicic continental crust is initially created. Here we document on our geological journey, our field strategy, and describe our field work in the remote valleys of NE‐Iceland.  相似文献   
2.
3.
The 2014–2015 Holuhraun fissure eruption provided a rare opportunity to study in detail the magmatic processes and magma plumbing system dynamics during a 6-month-long, moderate- to large-volume basaltic fissure eruption. In this contribution, we present a comprehensive dataset, including major and trace elements of whole-rock and glassy tephra samples, mineral chemistry, and radiogenic and oxygen isotope analyses from an extensive set of samples (n?=?62) that were collected systematically in several field campaigns throughout the entire eruptive period. We also present the first detailed chemical and isotopic characterization of magmatic sulfides from Iceland. In conjunction with a unique set of geophysical data, our approach provides a detailed temporal and spatial resolution of magmatic processes before and during this eruption. The 2014–2015 Holuhraun magma is compositionally indistinguishable from recent basalts erupted from the Bárðarbunga volcanic system, consistent with seismic observations for magma ascent close to the Bárðarbunga central volcano, followed by dyke propagation to the Holuhraun eruption site. Whole-rock elemental and isotopic compositions are remarkably constant throughout the eruption. Moreover, the inferred depth of the magma reservoir tapped during the eruption is consistently 8?±?5 km, in agreement with geodetic observations and melt inclusion entrapment pressures, but inconsistent with vertically extensive multi-tiered magma storage prior to eruption. The near constancy in the chemical and isotopic composition of the lava is consistent with the efficient homogenization of mantle-derived compositional variability. In contrast, occurrence of different mineral populations, including sulfide globules, which display significant compositional variability, requires a more complex earlier magmatic history. This may include sampling of heterogeneous mantle melts that mixed, crystallized and finally homogenized at mid- to lower-crustal conditions.  相似文献   
4.
The Palaeogene Kangerlussuaq Intrusion (50 Ma) of East Greenlanddisplays concentric zonation from quartz-rich nordmarkite (quartzsyenite) at the margin, through pulaskite, to foyaite (nephelinesyenite) in the centre; modal layering and igneous laminationare locally developed but there are no internal intrusive contacts.This is an apparent violation of the phase relations in Petrogeny'sResidua System. We propose that this intrusion is layered, gradingfrom quartz syenite at the bottom to nepheline syenite at thetop. Mineral and whole-rock major and trace element data andSr–Nd–Hf–Pb isotope data are presented thatprovide constraints on the petrogenesis of the intrusion. Radiogenicisotope data indicate a continuously decreasing crustal componentfrom the quartz nordmarkites (87Sr/86Sr = 0·7061; Ndi= 2·3; Hfi = 5·2; 206Pb/204Pbmeas = 16·98)to the foyaites (87Sr/86Sr = 0·7043–0·7044;Ndi = 3·8–4·9; Hfi = 10·7–11·1;206Pb/204Pbmeas = 17·78–17·88); the foyaitesare dominated by a mantle isotopic signature. The average Mg-numberof amphibole cores becomes increasingly primitive, varying from26·4 in the nordmarkites to 57·4 in the pulaskites.Modal layering, feldspar lamination and the presence of hugebasaltic xenoliths derived from the chamber roof, now restingon the transient chamber floor, demonstrate bottom-upwards crystallization.The intrusion cannot, therefore, have formed in a system closedto magmatic recharge. The lack of gneissic xenoliths in thenordmarkites suggests that most contamination took place deeperin the crust. In the proposed model, the nordmarkitic magmaformed during crustal assimilation in the roof zone of a large,silica-undersaturated alkali basaltic/basanitic, stratifiedmagma chamber, prior to emplacement in the uppermost crust.The more primitive syenites, terminating with foyaite at thetop of the intrusion, formed as a consequence of repeated rechargeof the Kangerlussuaq Intrusion magma chamber by tapping lesscontaminated, more primitive phonolitic melt from deeper partsof the underlying chamber during progressive armouring of theplumbing system. KEY WORDS: Kangerlussuaq; East Greenland; syenite; crustal contamination; magma mixing  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号