首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   2篇
  国内免费   1篇
测绘学   3篇
地球物理   4篇
地质学   23篇
天文学   2篇
  2018年   3篇
  2017年   3篇
  2013年   2篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2006年   2篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1982年   1篇
排序方式: 共有32条查询结果,搜索用时 26 毫秒
1.
2.
A total number of 328 groundwater samples are analysed to evaluate the groundwater flow systems in Bengal Delta aquifers, Bangladesh using environmental isotope (2H, 18O, 13C, 3H, and 14C) techniques. A well-defined Local Meteoric Water Line (LMWL) δ2H = 7.7 δ18O + 10.7 ‰ is constructed applying linear correlation analyses to the monthly weighted rainfall isotopic compositions (δ18O and δ2H). The δ18O and δ2H concentrations of all groundwater samples in the study area are plotted more or less over the LMWL, which provides compelling evidence that all groundwaters are derived from rainfall and floodwater with a minor localized evaporation effects for the shallow groundwaters. Tritium concentration is observed in 40 samples out of 41 with values varying between 0.3 and 5.0 TU, which represents an evidence of young water recharge to the shallow and intermediate aquifers. A decreasing trend of 14C activity is associated with the heavier δ13C values, which indicates the presence of geochemical reactions affecting the 14C concentration along the groundwater flow system. Both vertical and lateral decrease of 14C activity toward down gradient show the presence of regional groundwater flow commencing from the unconfined aquifers, which discharges along the coastal regions. Finally, shallow, intermediate, and deep groundwater flow dynamics has revealed in the Bengal Delta aquifers, Bangladesh.  相似文献   
3.
An innovative approach for drought identification is developed using Multi-Criteria Decision Making (MCDM) and Artificial Neural Network (ANN) models from surveyed drought parameter data around the Dhalai river watershed in Tripura hinterlands, India. Total eight drought parameters, i.e., precipitation, soil moisture, evapotranspiration, vegetation canopy, cropping pattern, temperature, cultivated land, and groundwater level were obtained from expert, literature and cultivator survey. Then, the Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP) were used for weighting of parameters and Drought Index Identification (DII). Field data of weighted parameters in the meso scale Dhalai River watershed were collected and used to train the ANN model. The developed ANN model was used in the same watershed for identification of drought. Results indicate that the Limited-Memory Quasi-Newton algorithm was better than the commonly used training method. Results obtained from the ANN model shows the drought index developed from the study area ranges from 0.32 to 0.72. Overall analysis revealed that, with appropriate training, the ANN model can be used in the areas where the model is calibrated, or other areas where the range of input parameters is similar to the calibrated region for drought identification.  相似文献   
4.
The Ganges River water and riverbank shallow groundwater were studied during a single wet season using the hydrochemical and isotopic composition of its dissolved load. The dissolved concentrations of major ions (Cl?, SO4 2?, NO3 ?, HCO3 ?, Ca2+, Na+, Mg2+, and K+), trace elements (barium (Ba) and strontium (Sr)) and stable isotopes (O and D) were determined on samples collected from the Ganges River and its riverbank shallow aquifers. In the present study, the shallow groundwater differs significantly from the Ganges River water; it shows distinct high concentrations of Ca2+, Mg2+, HCO3 ?, Ba, and Sr due to water–rock interaction and this in particular suggests that the Ganges River may not contribute significantly to the riverbank shallow aquifers during wet season. Besides, the sum of the total cationic charge (∑+, in milliequivalents per liter) in the groundwater shows high values (2.48 to 13.91 meq/L, average 9.12 meq/L), which is much higher than the sum of the cations observed in the Ganges water (1.36 to 3.10 meq/L, average 1.94 meq/L). Finally, the more depleted stable isotopic (δ 18O and δ 2H) compositions of the Ganges River water are in contrast to those of the riverbank aquifer having enriched stable isotopic values during the wet season and the riverbank groundwater thus has a purely local origin from precipitation.  相似文献   
5.
In the present paper the intensity of serration of quartz grain boundary sutures in the Palaeoproterozoic age Malanjkhand granite (Central India) is quantified using the ruler method of fractal analyses. The northern margin of the granite has proximity to the Central Indian Suture (CIS) that forms the southernmost part of Central Indian Tectonic Zone (CITZ) along which amalgamation of the northern and southern Indian shields took place. The fractal dimension (D) of the quartz sutures is calculated in 13 samples collected at varying distance from the CIS. D values are noted to increase in samples towards the CIS. This demonstrates the influence of the tectonic events along the CIS on fabric development in the Malanjkhand granite. Magmatic fabric defined by preferentially oriented feldspar laths and high-T solid-state deformation fabrics are observed in areas distant from the CIS. In contrast, mylonites and low-T fabrics such as bulging quartz grain boundaries occur in proximity to the CIS. It is inferred that the emplacement and high-T fabric development in the Malanjkhand granite was synchronous with regional accretionary processes that occurred in the region during the Palaeoproterozoic. Two different possibilities, one involving a single tectonic event and the other involving multiple tectonic events are discussed to explain the superimposition of low-T over high-T fabric due to which intensity of quartz grain boundary serration increases towards the CIS.  相似文献   
6.
A large number of mineral processing equipment employs the basic principles of gravity concentration in a flowing fluid of a few millimetres thick in small open channels where the particles are distributed along the flow height based on their physical properties and the fluid flow characteristics. Fluid flow behaviour and slurry transportation characteristics in open channels have been the research topic for many years in many engineering disciplines. However, the open channels used in the mineral processing industries are different in terms of the size of the channel and the flow velocity used. Understanding of water split behaviour is, therefore, essential in modeling flowing film concentrators. In this paper, an attempt has been made to model the water split behaviour in an inclined open rectangular channel, resembling the actual size and the flow velocity used by the mineral processing industries, based on the Prandtl's mixing length approach.  相似文献   
7.
Experiments were carried out to investigate the rheological properties of coal–oil–water suspension containing solids of different sizes. Two different coal samples with mean particle sizes of 120 mesh, 175 mesh and 220 mesh were used. The coal concentration was varied from 5% to 25% by weight. Sodium silicate has been used as an additive to study the behavior of the variation of average viscosity of the suspension. A generalized correlation has been developed to predict the average viscosity of suspension in terms of particle diameter of the coal, concentration of coal, viscosity of the suspending medium and the concentration of water. Experimental investigations revealed that coal–oil–water suspensions show an increase in the viscosity with decrease in coal size but with the addition of an additive, the average viscosity tends to decrease initially up to a certain optimum dosages and thereafter it increases with further addition of additives. Two empirical correlations are proposed for average viscosity of the coal–oil–water suspension, μsL in terms of physical properties of the solid and viscosity of the suspending medium with and without additives.  相似文献   
8.
The present study deals with the biosorption of As(III) from aqueous solution using mango leaves powder (MLP) and rice husk (RH) in a batch operation. Scanning electron microscopy and Fourier transformation infrared spectrometry analysis shows the surface texture of biosorbents and metal binding of functional groups of before and after biosorption of As(III). The optimum pH was obtained at 7 and 6 with 7 and 6?g/l of dosage of MLP and RH, respectively. The adsorption of As(III) onto MLP and RH was favourably influenced by an increase in temperature. Equilibrium data were well represented by the Freundlich isotherm model. Nitric acid and ethylenediaminetetra acetic acid was found to be a better eluant for the desorption followed by hydrochloric acid and sodium hydroxide of As(III) with a maximum desorption efficiency of 69.5, 48.5 and 79.4, 86.3?%, respectively. The pseudo-second-order kinetic model was found to best fitted of the experimental data over the equilibrium time at 32?h. The positive values of heat of adsorption (23.89?kJ/mol for MLP and 52.26?kJ/mol for RH) indicate the endothermic nature of the adsorption process. The thermodynamic study showed the spontaneous nature of the sorption of As(III) onto MLP and RH.  相似文献   
9.
Groundwater contaminant transport processes are usually simulated by the finite difference (FDM) or finite element methods (FEM). However, they are susceptible to numerical dispersion for advection‐dominated transport. In this study, a numerical dispersion‐free coupled flow and transport model is developed by combining the analytic element method (AEM) with random walk particle tracking (RWPT). As AEM produces continuous velocity distribution over the entire aquifer domain, it is more suitable for RWPT than FDM/finite element methods. Using the AEM solutions, RWPT tracks all the particles in a vectorized manner, thereby improving the computational efficiency. The present model performs a convolution integral of the response of an impulse contaminant injection to generate concentration distributions due to a permanent contaminant source. The RWPT model is validated with an available analytical solution and compared to an FDM solution, the RWPT model more accurately replicates the analytical solution. Further, the coupled AEM‐RWPT model has been applied to simulate the flow and transport in hypothetical and field aquifer problems. The results are compared with the FDM solutions and found to be satisfactory. The results demonstrate the efficacy of the proposed method.  相似文献   
10.
An integrated study has been carried out to elucidate the distribution and occurrence of arsenic in selected groundwater samples in the area of Sherajdikhan, Bangladesh. Arsenic and other parameters (T, pH, EC, Na+, K+, Ca2+, Mg2+, Cl, NO3 , SO4 2−, HCO3 , PO4 3−, Fe, Mn and DOC) have been measured in groundwater samples collected from shallow/deep tube wells at different depths. Hydrogeochemical data suggest that the groundwaters are generally Ca–Mg–HCO3 and Mg–Ca–HCO3 types with bicarbonate (HCO3 ) as the dominant anion, though the other type of water has also been observed. Dissolved arsenic in groundwater ranged from 0.006 to 0.461 mg/l, with 69% groundwater samples exceeded the Bangladesh limit for safe drinking water (0.05 mg/l). Correlation and principal component analysis have been performed to find out possible relationships among the examined parameters in groundwater. Low concentrations of NO3 and SO4 2−, and high concentrations of DOC, HCO3 and PO4 3− indicate the reducing condition of subsurface aquifer where sediments are deposited with abundant organic matter. Distinct relationship of As with Fe and Mn, and strong correlation with DOC suggests that the biodegradation of organic matter along with reductive dissolution of Fe–Mn oxyhydroxides has being considered the dominant process to release As in the aquifers studied herein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号