首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  国内免费   2篇
大气科学   2篇
地球物理   2篇
地质学   13篇
天文学   2篇
综合类   1篇
自然地理   1篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2014年   4篇
  2013年   3篇
  2012年   1篇
  1997年   1篇
排序方式: 共有21条查询结果,搜索用时 78 毫秒
1.
Natural Hazards - Water stress or more specifically drought assessment plays a key role in water management, especially in extreme climate conditions. Basically, globally gridded satellite-based...  相似文献   
2.
The grain size distribution (GSD) of sediment in comparison with the original soil GSD is discussed under different slopes (5, 15 and 25%) and rainfall intensities (30, 60 and 90 mm h–1 with respective duration of 30, 15 and 10 min) but identical runoff (15 mm). The sediment quantification was carried out by raindrop-induced flow transport (RIFT) or/and transport by flow (FT) using a rainfall simulator and a 6 × 1 m2 erosion plot and a silt loam. The results show a high degree of enrichment for size classes of 2–4 and 4–8 μm and a high degree of depletion for size classes of >63 μm under different slopes and rainfall intensities. In addition, the results show that the experimental enrichment ratio (ER) for particle size <16 μm under different slopes and rainfall intensities was greater than 1, while the ER for particle size >32 μm was less than 1.  相似文献   
3.
Accumulation of heavy metals in soil media is considered as a serious environmental problem, which is hazardous to human and animal health. There have been several methods for the removal of these toxic metals. One of the commonly used methods is the use of plants, especially ornamental plants to remove heavy metals from soils. In this regard, the study has been conducted on the soils contaminated with Mn, Pb, Ni, and Cd using factorial experiment in a completely randomized design with two factors including three types of soil (soil A for the highest level of contamination, B for the lowest level of pollution, and C for the non-contaminated soil) with different contamination levels as well as three types of ornamental plants, gladiolus, daffodils, and narcissus with four replications. In another part of the study, soil A and gladiolus were used in a completely randomized design with three replications, and also three types of fertilizers, such as municipal solid waste compost, triple superphosphate and diammonium phosphate, were added to this soil. In addition, the availability of heavy metal was studied in gladiolus as influenced by the application of organic and chemical fertilizers. The results showed that heavy metal pollution caused reduction in the dry weight of gladiolus and tulips compared to the control sample, while there was no significant effect of pollution on the dry weight of narcissus. The uptake of Mn, Pb, Ni, and Cd by all three plants has been increased with enhancing the pollution levels of heavy metals. The highest concentration of Pb in the shoots of plants was observed in soil A with an average amount of 61.16 (mg kg?1), which revealed a substantial difference relative to the treatment of soil B and C. The most and least amount of Ni in the plants shoots were related to soil A and soil C with an average of 2.35 and 0.89 mg kg?1, respectively. The uptake of Pb by shoots of all three plants was nearly similar to each other, while more Pb was absorbed by the bulbs of gladiolus compared to the bulbs of other plants. Increment in the pollution levels led to the decrement in enrichment factor (EF); however, there was no effect of pollution levels on EF of Mn and Pb. Moreover, there was no effect of increasing pollution levels on translocation factor of these elements. In gladiolus, after application of organic and chemical fertilizers, it was observed that the concentration of heavy metals was far more in the bulbs compared to the shoots. In conclusion, the cultivation of these ornamental plants is highly recommended due to not only their decorative aspect but also their ability for bioremediation as well as being economical.  相似文献   
4.
Sediment samples collected from the West Port, the west coastal waters of Malaysia, were analyzed by standard methods to determine the degree of hydrocarbon contamination and identify the sources of polyaromatic hydrocarbons (PAHs). Concentrations of PAHs in the port sediments ranged from 100.3 to 3,446.9 μg/kg dw. The highest concentrations were observed in stations close to the coastline, locations affected by intensive shipping activities and industrial input. These were dominated by high-molecular-weight PAHs (4–6 rings). Source identification showed that PAHs originated mostly pyrogenically, from the combustion of fossil fuels, grass, wood, and coal or from petroleum combustion. Regarding ecological risk estimation, only station 7 was moderately polluted, the rest of the stations suffered rare or slight adverse biological effects with PAH exposure in surface sediment, suggesting that PAHs are not considered as contaminants of concern in the West Port.  相似文献   
5.
The contamination level of total petroleum hydrocarbons (TPH) in wastewater and surface sediment samples from the Petrochemical Special Economic Zone (PETZONE) and adjacent coastal area in Musa Bay (in Northwest of Persian Gulf) was examined. Concentrations of TPH in the Musa Bay sediments ranged from 16.48 to 97.15 µg/g dry weight (dw) with average value of 48.98 ± 30.36 µg/g dw. The highest concentrations were estimated in stations close to the coastline, locations affected by intensive petrochemical discharges and shipping activities. The average TPH concentration in the PETZONE wastewater effluent samples was 5.22 mg/L, with a range of 0.06–35.33 mg/L. Regarding environmental impact assessment, the concentration of TPH was lower than the wastewater effluent discharge standard at most of the monitoring stations inside PETZONE companies, with the exception of stations 15, 16 (Imam Khomeini petrochemical company 1, 2) and 17 (Razi petrochemical company). These stations were considered as moderate environmental aspects, suggesting that concentration of TPH in the wastewater effluents of these petrochemical companies could be considered as contaminants of concern in the PETZONE area.  相似文献   
6.
The Darreh‐Zereshk (DZ) and Ali‐Abad (AB) porphyry copper deposits are located in southwest of the Yazd city, central Iran. These deposits occur in granitoid intrusions, ranging in composition from quartz monzodiorite through granodiorite to granite. The ore‐hosting intrusions exhibit intense hydrofracturing that lead to the formation of quartz‐sulfide veinlets. Fluid inclusions in hydrothermal quartz in these deposits are classified as a mono‐phase vapor type (Type I), liquid‐rich two phase (liquid + vapor) type (Type IIA), vapor‐rich two phase (vapor + liquid) type (Type IIB), and multi‐phase (liquid + vapor + halite + sylvite + hematite + chalcopyrite and pyrite) type (Types III). Homogenization temperatures (Th) and salinity data are presented for fluid inclusions from hydrothermal quartz veinlets associated with potassic alteration and other varieties of hypogene mineralization. Ore precipitation occurred between 150° to >600°C from low to very high salinity (1.1–73.9 wt% NaCl equivalent) aqueous fluids. Two stages of hydrothermal activity characterized are recognized; one which shows relatively high Th and lower salinity fluid (Type IIIa; Th(L‐V) > Tm(NaCl)); and one which shows lower Th and higher salinity (Type IIIb; Th(L‐V) < Tm(NaCl)). The high Th(L‐V) and salinities of Type IIIa inclusions are interpreted to represent the initial existence of a dense fluid of magmatic origin. The coexistence of Type IIIb, Type I and Type IIB fluid inclusions suggest that these inclusions resulted either from trapping of boiling fluids and/or represent two immiscible fluids. These processes probably occurred as the result of pressure fluctuations from lithostatic to hydrostatic conditions under a pressure of 200 to 300 bar. Dilution of these early fluids by meteoritic water resulted in lower temperatures and low to moderate salinity (<20 wt% NaCl equiv.) fluids (Type IIA). Fluid inclusion analysis reveals that the hydrothermal fluid, which formed mineralized quartz veinlets in the rocks with potassic alteration, had temperatures of ~500°C and salinity ~50 wt% NaCl equiv. Cryogenic SEM‐EDS analyses of frozen and decrepitated ore‐bearing fluids trapped in the inclusions indicate the fluids were dominated with NaCl, and KCl with minor CaCl2.  相似文献   
7.
8.
Abstract: A rich assemblage of planktonic foraminifera has been studied from an outcrop of the Gurpi Formation, the hydrocarbon source rock in the southwest Iran, Deh Dasht area (Kuh-e Siah anticline). Based on the distribution of the planktonic foraminifera, eight biozones have been recognized that included: Dicarinella concavata Interval Zone (Earliest Santonian), Dicarinella asymetrica Total Range Zone (Santonian to Earliest Campanian), Globotruncanita elevata Partial Range Zone (Early Campanian), Globotruncana ventricosa Interval Zone (Middle to Late Campanian), Radotruncana calcarata Total Range Zone (Late Campanian), Globotruncanella havanensis Partial Range Zone (Late Campanian), Globotruncana aegyptiaca Interval Zone (Late to latest Campanian), Gansserina gansseri Interval Zone (Latest Campanian to Early Maastrichtian). These biozones indicates that the Gurpi Formation deposited during the Early Santonian- Early Maastrichtian. These biozones are compared to the most standard biozones defined in Tethysian domain. Based on distribution of morphotype groups of planktonic foraminifera, planktonic to benthic ratio (P/B) and content of carbonate, nine third-order sequences are recognized.  相似文献   
9.
The relative contributions of spatial and temporal fluctuations are different in shaping natural communities in a tropical coastal/estuarine system. Understanding how coastal communities respond to these fluctuations is still equivocal, and thus, available data are rare. Here, multiple analytical approaches were used to identify key spatial and temporal factors, and to quantify their relative roles in shaping a macrobenthic community through space (contamination degree, physical parameters, and sediment characteristics) and time (climatic factors, season, and year). A dataset of eight sampling times was analyzed over a period of 2 years, in which macrobenthic species abundances were sampled. A total of 33 species were identified, including 18 bivalves, 5 gastropods, and 4 crustaceans. The other taxa were less diverse. The results show that there were no significant temporal changes of macrobenthic community structure, but spatial changes were significant and synchronized with environmental factors (i.e., sediment characteristics, water depth, and the distance from anthropogenic sources). This study demonstrates that spatial factors played a primary role in structuring of macrobenthic assemblages, whereas the influence of temporal factors appeared less across geographically distinct sites. Thus, temporal variation of a coastal macrobenthic community appears to be controlled by partly different processes at different scales.  相似文献   
10.
This investigation presents the temporal and spatial distribution of heavy metals (As, Cd, Cr, Cu, Ni, Pb, Hg, and Zn), in water and in sediments of Port Klang, Malaysia. Water and sediment samples were collected from 21 stations at 3-month intervals, and contamination factor $ (C_{\text{f}} ) $ and contamination degree $ (C_{\text{d}} ) $ were calculated to estimate the contamination status at the sampling stations. Cluster analysis was used to classify the stations based on the contamination sources. Results show that concentrations of As, Cd, Hg, and Pb in sediment and As, Cd, Hg, Pb, Cr, and Zn in water were significantly higher than the background values at which these metals are considered hazardous. The main sources of heavy metal contamination in Port Klang were industrial wastewater and port activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号