首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   315篇
  免费   10篇
  国内免费   6篇
测绘学   3篇
大气科学   11篇
地球物理   71篇
地质学   154篇
海洋学   35篇
天文学   26篇
自然地理   31篇
  2021年   4篇
  2020年   5篇
  2019年   12篇
  2018年   8篇
  2017年   6篇
  2016年   5篇
  2015年   11篇
  2014年   13篇
  2013年   18篇
  2012年   27篇
  2011年   21篇
  2010年   16篇
  2009年   20篇
  2008年   20篇
  2007年   20篇
  2006年   9篇
  2005年   6篇
  2004年   13篇
  2003年   9篇
  2002年   11篇
  2001年   6篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   4篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1988年   2篇
  1985年   8篇
  1984年   8篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   4篇
  1973年   1篇
  1965年   1篇
  1960年   1篇
  1957年   1篇
  1950年   1篇
排序方式: 共有331条查询结果,搜索用时 15 毫秒
1.
The Shenandoah Watershed Study (established in 1979) and the Virginia Trout Stream Sensitivity Study (established in 1987) serve to increase understanding of hydrological and biogeochemical changes in western Virginia mountain streams that occur in response to acidic deposition and other ecosystem stressors. The SWAS-VTSSS program has evolved over its 40+ year history to consist of a temporally robust and spatially stratified monitoring framework. Currently stream water is sampled for water quality bi-hourly during high-flow events at three sites and weekly at four sites within Shenandoah National Park (SHEN), and quarterly at 72 sites and on an approximately decadal frequency at ~450 sites within the wider western Virginia Appalachian region. Stream water is evaluated for pH, acid neutralizing capacity (ANC), base cations (calcium, magnesium, sodium and potassium ion), acid anions (sulphate, nitrate and chloride), silica, ammonium, and conductivity with a subset of samples evaluated for monomeric aluminium and dissolved organic carbon. Hourly stream discharge (four sites) and in-situ measurements of conductivity, water and air temperature (three sites) are also measured within SHEN. Here we provide an overview and timeline of the SWAS-VTSSS stream water monitoring program, summarize the field and laboratory methods, describe the water chemistry and hydrologic data sets, and document major watershed disturbances that have occurred during the program history. Website links and instructions are provided to access the stream chemistry and time-series monitoring data in open-access federal databases. The purpose of this publication is to promote awareness of these unique, long-term data sets for wider use in catchment studies. The water chemistry and hydrologic data can be used to investigate a wide range of biogeochemical research questions and provide key inputs for models of these headwater stream ecosystems. SWAS-VTSSS is an ongoing program and quality assured data sets are uploaded to the databases annually.  相似文献   
2.
This paper resolves the origin of clay hummock micro-topography in seasonal wetlands of the Drakensberg Foothills, providing a review and appraisal of previously-suggested mechanisms of hummock formation in the context of new field and laboratory data. Field surveys revealed neo-formation of clay hummocks in a river channel that had been abandoned in c.1984. Fresh earthworm castings were located atop hummocks protruding from inundated abandoned channel margins. Earthworm castings, and sediment cores taken in hummocks and adjacent hollows, were analysed for soil-adsorbed carbon and nitrogen using an HCN analyser, and for 210Pb activity using alpha-geochronology. 210Pb activity profiles suggest relative enrichment of the isotope in hummocks, and relative depletion in adjacent hollows. Earthworm castings are characterised by very high 210Pb activity, as well as high C and N contents. Hummocks have significantly higher C and N contents than adjacent hollows. Results suggest that it is the foraging activity of earthworms in litter-rich seasonal wetland hollows, and repeated excretion of castings atop adjacent hummocks, that is responsible for the elemental enrichment observed. The paper presents a conceptual model of hummock formation in wetlands through interactions between hydrogeomorphology and earthworm activity, and illustrates a mechanism of biogeomorphic inheritance through which ordered patterns of preferential flow can emerge in ecosystems. Further implications of hummock formation and nodal accumulation of nutrients are considered in relation to wetland resilience and regulatory ecosystem service provision.© 2018 John Wiley & Sons, Ltd.  相似文献   
3.
The evolution of volcanic landscapes and their landslide potential are both dependent upon the weathering of layered volcanic rock sequences. We characterize critical zone structure using shallow seismic Vp and Vs profiles and vertical exposures of rock across a basaltic climosequence on Kohala peninsula, Hawai’i, and exploit the dramatic gradient in mean annual precipitation (MAP) across the peninsula as a proxy for weathering intensity. Seismic velocity increases rapidly with depth and the velocity–depth gradient is uniform across three sites with 500–600 mm/yr MAP, where the transition to unaltered bedrock occurs at a depth of 4 to 10 m. In contrast, velocity increases with depth less rapidly at wetter sites, but this gradient remains constant across increasing MAP from 1000 to 3000 mm/yr and the transition to unaltered bedrock is near the maximum depth of investigation (15–25 m). In detail, the profiles of seismic velocity and of weathering at wet sites are nowhere monotonic functions of depth. The uniform average velocity gradient and the greater depths of low velocities may be explained by the averaging of velocities over intercalated highly weathered sites with less weathered layers at sites where MAP > 1000 mm/yr. Hence, the main effect of climate is not the progressive deepening of a near‐surface altered layer, but rather the rapid weathering of high permeability zones within rock subjected to precipitation greater than ~1000 mm/yr. Although weathering suggests mechanical weakening, the nearly horizontal orientation of alternating weathered and unweathered horizons with respect to topography also plays a role in the slope stability of these heterogeneous rock masses. We speculate that where steep, rapidly evolving hillslopes exist, the sub‐horizontal orientation of weak/strong horizons allows such sites to remain nearly as strong as their less weathered counterparts at drier sites, as is exemplified by the 50°–60° slopes maintained in the amphitheater canyons on the northwest flank of the island. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
4.

Carbonates in fresh hypabyssal kimberlites worldwide have been studied to understand their origin [i.e. primary magmatic (high T) versus deuteric (‘low T’) versus hydrothermal/alteration (‘low T’)] and identify optimal strategies for petrogenetic studies of kimberlitic carbonates. The approach presented here integrates detailed textural characterisation, cathodoluminescence (CL) imaging, in situ major- and trace-element analysis, as well as in situ Sr-isotope analysis. The results reveal a wide textural diversity. Calcite occurs as fine-grained groundmass, larger laths, segregations, veins or as a late crystallising phase, replacing olivine or early carbonates. Different generations of carbonates commonly coexist in the same kimberlite, each one defined by a characteristic texture, CL response and composition (e.g., variable Sr and Ba concentrations). In situ Sr isotope analysis revealed a magmatic signature for most of the carbonates, based on comparable 87Sr/86Sr values between these carbonates and the coexisting perovskite, a robust magmatic phase. However, this study also shows that in situ Sr isotope analysis not always allow distinction between primary (i.e., magmatic) and texturally secondary carbonates within the same sample. Carbonates with a clear secondary origin (e.g., late-stage veins) occasionally show the same moderately depleted 87Sr/86Sr ratios of primary carbonates and coexisting perovskite (e.g., calcite laths-shaped crystals with 87Sr/86Sr values identical within uncertainty to those of vein calcite in the De Beers kimberlite). This complexity emphasises the necessity of integrating detailed petrography, geochemical and in situ Sr isotopic analyses for an accurate interpretation of carbonate petrogenesis in kimberlites. Therefore, the complex petrogenesis of carbonates demonstrated here not only highlights the compositional variability of kimberlites, but also raises concerns about the use of bulk-carbonate C-O isotope studies to characterise the parental melt compositions. Conversely, our integrated textural and in situ study successfully identifies the most appropriate (i.e. primary) carbonates for providing constraints on the isotopic parameters of parental kimberlite magmas.

  相似文献   
5.
Considerable debate revolves around the relative importance of rock type, tectonics, and climate in creating the architecture of the critical zone. We demonstrate the importance of climate and in particular the rate of water recharge to the subsurface, using numerical models that incorporate hydrologic flowpaths, chemical weathering, and geomorphic rules for soil production and transport. We track alterations in both solid phase (plagioclase to clay) and water chemistry along hydrologic flowpaths that include lateral flow beneath the water table. To isolate the role of recharge, we simulate dry and wet cases and prescribe identical landscape evolution rules. The weathering patterns that develop differ dramatically beneath the resulting parabolic interfluves. In the dry case, incomplete weathering is shallow and surface parallel, whereas in the wet case, intense weathering occurs to depths approximating the base of the bounding channels, well below the water table. Exploration of intermediate cases reveals that the weathering state of the subsurface is strongly governed by the ratio of the rate of advance of the weathering front itself controlled by the water input rate, and the rate of erosion of the landscape. The system transitions between these end‐member behaviours rather abruptly at a weathering front speed ‐ erosion rate ratio of approximately 1. Although there are undoubtedly direct roles for tectonics and rock type in critical zone architecture, and yet more likely feedbacks between these and climate, we show here that differences in hillslope‐scale weathering patterns can be strongly controlled by climate.  相似文献   
6.
Side channel construction is a common intervention applied to increase a river's conveyance capacity and to increase its ecological value. Past modelling efforts suggest two mechanisms affecting the morphodynamic change of a side channel: (1) a difference in channel slope between the side channel and the main channel and (2) bend flow just upstream of the bifurcation. The objective of this paper was to assess the conditions under which side channels generally aggrade or degrade and to assess the characteristic timescales of the associated morphological change. We use a one‐dimensional bifurcation model to predict the development of side channel systems and the characteristic timescale for a wide range of conditions. We then compare these results to multitemporal aerial images of four side channel systems. We consider the following mechanisms at the bifurcation to be important for side channel development: sediment diversion due to the bifurcation angle, sediment diversion due to the transverse bed slope, partitioning of suspended load, mixed sediment processes such as sorting at the bifurcation, bank erosion, deposition due to vegetation, and floodplain sedimentation. There are limitations to using a one‐dimensional numerical model as it can only account for these mechanisms in a parametrized manner, but the model reproduces general behaviour of the natural side channels until floodplain‐forming processes become important. The main result is a set of stability diagrams with key model parameters that can be used to assess the development of a side channel system and the associated timescale, which will aid in the future design and maintenance of side channel systems. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
7.
The architecture of the Critical Zone, including mobile regolith thickness and depth to the weathering front, is first order controlled by advance of a weathering front at depth and transport of sediment at the surface. Differences in conditions imposed by slope aspect in the Gordon Gulch catchment of the Boulder Creek Critical Zone Observatory present a natural experiment to explore these interactions. The weathering front is deeper and saprolite more decayed on north-facing than on south-facing slopes. Simple numerical models of weathering front advance, mobile regolith production, and regolith transport are used to test how weathering and erosion rates interact in the evolution of weathered profiles. As the processes which attempt are being made to mimic are directly tied to climate variables such as mean annual temperature, the role of Quaternary climate variation in governing the evolution of Critical Zone architecture can be explored with greater confidence.  相似文献   
8.
Long-term considerations of repeated and increasing sand extraction on the Netherlands Continental Shelf (North Sea) may lead to the creation of a mega-scale extraction trench in front of the Dutch coast (length hundreds of km, width over 10 km, depth several m). We investigate the impact of such a huge topographic intervention on tidal dynamics, which is a key aspect in hydrodynamics, and indirectly also affecting morphodynamics and ecology.  相似文献   
9.
Using the Met Office Global and Regional Ensemble Prediction System (MOGREPS) implemented at the Korea Meteorological Administration (KMA), the effect of doubling the ensemble size on the performance of ensemble prediction in the warm season was evaluated. Because a finite ensemble size causes sampling error in the full forecast probability distribution function (PDF), ensemble size is closely related to the efficiency of the ensemble prediction system. Prediction capability according to doubling the ensemble size was evaluated by increasing the number of ensembles from 24 to 48 in MOGREPS implemented at the KMA. The initial analysis perturbations generated by the Ensemble Transform Kalman Filter (ETKF) were integrated for 10 days from 22 May to 23 June 2009. Several statistical verification scores were used to measure the accuracy, reliability, and resolution of ensemble probabilistic forecasts for 24 and 48 ensemble member forecasts. Even though the results were not significant, the accuracy of ensemble prediction improved slightly as ensemble size increased, especially for longer forecast times in the Northern Hemisphere. While increasing the number of ensemble members resulted in a slight improvement in resolution as forecast time increased, inconsistent results were obtained for the scores assessing the reliability of ensemble prediction. The overall performance of ensemble prediction in terms of accuracy, resolution, and reliability increased slightly with ensemble size, especially for longer forecast times.  相似文献   
10.
Annual export of 11 major and trace solutes for the Yukon River is found to be accurately determined based on summing 42 tributary contributions. These findings provide the first published estimates of tributary specific distribution of solutes within the Yukon River basin. First, we show that annual discharge of the Yukon River can be computed by summing calculated annual discharges from 42 tributaries. Annual discharge for the tributaries is calculated from the basin area and average annual precipitation over that area using a previously published regional regression equation. Based on tributary inputs, we estimate an average annual discharge for the Yukon River of 210 km3 year–1. This value is within 1% of the average measured annual discharge at the U.S. Geological Survey gaging station near the river terminus at Pilot Station, AK, for water years 2001 through 2005. Next, annual loads for 11 solutes are determined by combining annual discharge with point measurements of solute concentrations in tributary river water. Based on the sum of solutes in tributary water, we find that the Yukon River discharges approximately 33 million metric tons of dissolved solids each year at Pilot Station. Discharged solutes are dominated by cations calcium and magnesium (5.65 × 109 and 1.42 × 109 g year–1) and anions bicarbonate and sulphate (17.3 × 109 and 5.40 × 109 g year–1). These loads compare well with loads calculated independently at the three continuous gaging stations along the Yukon River. These findings show how annual solute yields vary throughout a major subarctic river basin and that accurate estimates of total river export can be determined from calculated tributary contributions. Copyright © 2011. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号