首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  国内免费   1篇
地球物理   2篇
地质学   2篇
  2021年   1篇
  2020年   2篇
  2014年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The Nain and Ashin ophiolites consist of Mesozoic melange units that were emplaced in the Late Cretaceous onto the continental basement of the Central-East Iran microcontinent(CEIM).They largely consist of serpentinized peridotites slices;nonetheless,minor tectonic slices of sheeted dykes and pillow lavas-locally stratigraphically associated with radiolarian cherts-can be found in these ophiolitic melanges.Based on their whole rock geochemistry and mineral chemistry,these rocks can be divided into two geochemical groups.The sheeted dykes and most of the pillow lavas show island arc tholeiitic(IAT)affinity,whereas a few pillow lavas from the Nain ophiolites show calc-alkaline(CA)affinity.Petrogenetic modeling based on trace elements composition indicates that both IAT and CA rocks derived from partial melting of depleted mantle sources that underwent enrichment in subduction-derived components prior to melting.Petrogenetic modeling shows that these components were represented by pure aqueous fluids,or sediment melts,or a combination of both,suggesting that the studied rocks were formed in an arc-forearc tectonic setting.Our new biostratigraphic data indicate this arc-forearc setting was active in the Early Cretaceous.Previous tectonic interpretations suggested that the Nain ophiolites formed,in a Late Cretaceous backarc basin located in the south of the CEIM(the so-called Nain-Baft basin).However,recent studies showed that the CEIM underwent a counter-clockwise rotation in the Cenozoic,which displaced the Nain and Ashin ophiolites in their present day position from an original northeastward location.This evidence combined with our new data and a comparison of the chemical features of volcanic rocks from different ophiolites around the CEIM allow us to suggest that the Nain-Ashin volcanic rocks and dykes were formed in a volcanic arc that developed on the northern margin of the CEIM during the Early Cretaceous in association with the subduction,below the CEIM,of a Neo-Tethys oceanic branch that was existing between the CEIM and the southern margin of Eurasia.As a major conclusion of this paper,a new geodynamic model for the Cretaceous evolution of the CEIM and surrounding Neo-Tethyan oceanic basins is proposed.  相似文献   
2.
Identification of temporal changes in hydrological regimes of river basins is an important topic in contemporary hydrology because of the potential impacts of climate change on river flow regimes.For this purpose,long-term historical records of rainfall(P),runoff(Q)and other climatic factors were used to investigate hydrological variability and trends in the Tajan River Basin over the period 1969e1998.Actual evaporation(E),rainfall variability index(d),evaporation ratio(CE)and runoff ratio(CQ)were estimated from the available hydroclimatological records.Mann-Kendall trend analysis and nonparametric Sen's slope estimates were performed on the respective time series variables to detect monotonic trend direction and magnitude of change over time.Rainfall variability index showed that 1973 was the wettest year(δ=+2.039)while 1985 was the driest(δ=-1.584).Also,decades 69e78 and 89e98 were recognized as the wettest and driest decades respectively.The gradient of variation of climatological parameters showed that during the study period,all three parameters of rainfall,evaporation and runoff have decreased and the variations of rainfall and evaporation were significant at the 95%level.Investigation of hydrological changes due of dam construction(1999)showed that the amount and annual distribution of discharge were completely different pre and post-dam construction.Discharge decreased in high water months and increased in low water months to meet water supply demands,especially for agriculture.The relationship between temperature and rainfall trends is compared for three stations in Mazandaran Province(Gorgan,Babolsar and Ramsar)from 1956 to 2003 and nine other stations with different statistical periods of 19e36 years,relating trends to northern hemisphere and global trends.Decreases in temperature were accompanied by decreases in rainfall,and vice versa.These trends were not observed in northern hemisphere and world scales,where temperature increases are accompanied by decreases in rainfall.These variations of hydroclimatological parameters show undesirable water resources situations during the statistical periods if the trend continues severe water resource crises.  相似文献   
3.
Transport time scales are key parameters for understanding the hydrodynamic and biochemical processes within estuaries. In this study, the flushing and residence times within the Arvand River estuary have been estimated using a two‐dimensional hydrodynamic model called CE‐QUAL‐W2. The model has been calibrated and verified by two different sets of field data and using the k‐ε vertical eddy diffusivity scheme. Flushing time has been estimated using different methods such as the tidal prism and fraction of freshwater methods. Moreover, residence times have been investigated using pulse residence time, estuarine residence time and remnant function approaches. The results have shown that different methods yield different time scales, and freshwater inflow has the greatest impact upon estimation of residence time, whereas tidal circulation hardly contributes to residence time at all. It has also been shown that the neap‐spring circulation and start phase of simulations have negligible effects on the Arvand's time scales. The investigation of bathymetry showed that two sills of the estuary tend to significantly increase residence time. Understanding the applicability of these time scales and their estimation approaches helps us to evaluate the water quality management of estuaries. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
4.

This paper presents a coupled finite and discrete-element model (FEM and DEM) to simulate internal erosion. The model is based on ICY, an interface between COMSOL, an FEM engine, and YADE, a DEM code. With this model, smaller DEM subdomains are generated to simulate particle displacements at the grain scale. Particles in these small subdomains are subjected to buoyancy, gravity, drag and contact forces for short time steps (0.1 s). The DEM subdomains provide the macroscale (continuum) model with a particle flux distribution. Through a mass conservation equation, the flux distribution allows changes in porosity, hydraulic conductivity and hydraulic gradient to be evaluated for the same time steps at a larger, continuum scale. The updated hydraulic gradients from the continuum model provide the DEM subdomains with updated hydrodynamic forces based on a coarse-grid method. The number of particles in the DEM subdomains is also updated based on the new porosity distribution. The hierarchical multiscale model (HMM) was validated with the simulation of suffusion. Results for the proposed HMM algorithm are consistent with results based on a DEM model incorporating the full sample and simulation duration. The proposed HMM algorithm could enable the modelling of internal erosion for soil volumes that are too large to be modelled with a single DEM subdomain.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号