首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
  国内免费   2篇
大气科学   1篇
地球物理   4篇
地质学   7篇
海洋学   4篇
自然地理   4篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2011年   1篇
  2010年   4篇
  2009年   3篇
  2006年   1篇
  2003年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有20条查询结果,搜索用时 906 毫秒
1.
The Nakuru-Elmenteita basin in the Central Kenya Rift, contains two shallow, alkaline lakes, Lake Nakuru (1770 m above sea level) and Lake Elmenteita (1786 m). Ancient shorelines and lake sediments at 1940 m suggest that these two lakes formed a single large and deep lake as a result of a wetter climate during the early Holocene. Here, we used a hydrological model to compare the precipitation–evaporation balance during the early Holocene to today. Assuming that the Nakuru-Elmenteita basin was hydrologically closed, as it is today, the most likely climate scenario includes a 45% increase in mean-annual precipitation, a 0.5°C decrease in air temperature, and an increase of 9% in cloud coverage from the modern values. Compared to the modeling results from other East African lake basins, this dramatic increase in precipitation seems to be unrealistic. Therefore, we propose a significant flow of water from the early Holocene Lake Naivasha in the south towards the Nakuru-Elmenteita basin to compensate the extremely negative hydrological budget of this basin. Since we did not find any field evidence for a surface connection, as often proposed during the last 70 years, the hydrological deficit of the Nakuru-Elmenteita basin could have also been compensated by a subsurface water exchange.  相似文献   
2.
The Late Pleistocene to Middle Holocene African Humid Period (AHP) was characterized by dramatic hydrologic fluctuations in the tropics. A better knowledge of the timing, spatial extent, and magnitude of these hydrological fluctuations is essential to decipher the climate-forcing mechanisms that controlled them. The Suguta Valley (2°N, northern Kenya Rift) has recorded extreme environmental changes during the AHP. Extensive outcrops of lacustrine sediments, ubiquitous wave-cut notches, shorelines, and broad terrace treads along the valley margins are the vestiges of Lake Suguta, which once filled an 80 km long and 20 km wide volcano–tectonic depression. Lake Suguta was deep between 16.5 and 8.5 cal ka BP. During its maximum highstand, it attained a water depth of ca 300 m, a surface area of ca 2150 km2, and a volume of ca 390 km3. The spatial distribution of lake sediments, the elevation of palaeo-shorelines, and other geomorphic evidences suggest that palaeo-Lake Suguta had an overflow towards the Turkana basin to the north. After 8.5 cal ka BP, Lake Suguta abruptly disappeared. A comparison of the Lake Suguta water-level curve with other reconstructed water levels from the northern part of the East African Rift System shows that local insolation, which is dominated by precessional cycles, may have controlled the timing of lake highstands in this region. Our data show that changes of lake levels close to the Equator seem to be driven by fluctuations of spring insolation, while fluctuations north of the Equator are apparently related to variations in summer insolation. However, since these inferred timings of lake-level changes are mostly based on the radiocarbon dating of carbonate shells, which may have been affected by a local age reservoir, alternative dating methods are needed to support this regional synthesis. Between 12.7 and 11.8 cal ka BP, approximately during the Northern Hemisphere high-latitude Younger Dryas, the water level of Lake Suguta fell by ca 50 m, suggesting that remote influences also affected local hydrology.  相似文献   
3.
We analyzed published records of terrigenous dust flux from marine sediments off subtropical West Africa, the eastern Mediterranean Sea, and the Arabian Sea, and lake records from East Africa using statistical methods to detect trends, rhythms and events in Plio-Pleistocene African climate. The critical reassessment of the environmental significance of dust flux and lake records removes the apparent inconsistencies between marine vs. terrestrial records of African climate variability. Based on these results, major steps in mammalian and hominin evolution occurred during episodes of a wetter, but highly variable climate largely controlled by orbitally induced insolation changes in the low latitudes.  相似文献   
4.
The long-term histories of the neighboring Nakuru–Elmenteita and Naivasha lake basins in the Central Kenya Rift illustrate the relative importance of tectonic versus climatic effects on rift-lake evolution and the formation of disparate sedimentary environments. Although modern climate conditions in the Central Kenya Rift are very similar for these basins, hydrology and hydrochemistry of present-day lakes Nakuru, Elmenteita and Naivasha contrast dramatically due to tectonically controlled differences in basin geometries, catchment size, and fluvial processes. In this study, we use eighteen 14C and 40Ar/39Ar dated fluvio-lacustrine sedimentary sections to unravel the spatiotemporal evolution of the lake basins in response to tectonic and climatic influences. We reconstruct paleoclimatic and ecological trends recorded in these basins based on fossil diatom assemblages and geologic field mapping. Our study shows a tendency towards increasing alkalinity and shrinkage of water bodies in both lake basins during the last million years. Ongoing volcano-tectonic segmentation of the lake basins, as well as reorganization of upstream drainage networks have led to contrasting hydrologic regimes with adjacent alkaline and freshwater conditions. During extreme wet periods in the past, such as during the early Holocene climate optimum, lake levels were high and all basins evolved toward freshwater systems. During drier periods some of these lakes revert back to alkaline conditions, while others maintain freshwater characteristics. Our results have important implications for the use and interpretation of lake sediment as climate archives in tectonically active regions and emphasize the need to deconvolve lacustrine records with respect to tectonics versus climatic forcing mechanisms.  相似文献   
5.
Understanding the level of connectivity between estuarine and coastal waters is essential for appropriate management of estuarine-associated taxa. Most studies have focused on the role of a single estuary, while limited research exists on the importance of multiple estuaries to individuals of estuarine-associated species. This study used acoustic telemetry to assess the usage of multiple estuaries and coastal waters by the estuarine-dependent spotted grunter Pomadasys commersonnii. Twenty-six adult fish were tagged with acoustic transmitters in the Kariega and Bushmans estuaries, South Africa, and their movements along a 300-km stretch of Indian Ocean coastline were monitored for up to 17 months. Tagged individuals spent most of their time in the estuary where they were tagged (55% and 85% for fish tagged in the two estuaries, respectively), followed by time in the sea (30% and 15%) and in other estuaries (15% and <1%). The mean durations of sea trips for fish tagged in the Kariega Estuary or Bushmans Estuary, respectively, were 25 days (range 3–55) and 12 days (range 2–22). Of the fish that went to sea, 93% from the Kariega Estuary and 60% from the Bushmans Estuary visited other estuaries. Most visits were undertaken to the Swartkops, Bushmans and Kowie estuaries, although the longest durations were spent in the Sundays Estuary. Individuals moved to estuaries up to 130 km away. The total distance travelled between estuaries by an individual during the study was ~529 km, with means of 201 and 184 km, respectively, for fish tagged in the Kariega and Bushmans estuaries. Despite covering large distances between estuaries, individuals often returned to their tagging estuary. Residency in their tagging estuary, combined with frequent visits to a neighbouring estuary, highlights the importance of estuarine habitats for this popular fish species, even after reaching maturity.  相似文献   
6.
Gravel bars (GBs) contribute to carbon dioxide (CO2) emissions from stream corridors, with CO2 concentrations and emissions dependent on prevailing hydraulic, biochemical, and physicochemical conditions. We investigated CO2 concentrations and fluxes across a GB in a prealpine stream over three different discharge‐temperature conditions. By combining field data with a reactive transport groundwater model, we were able to differentiate the most relevant hydrological and biogeochemical processes contributing to CO2 dynamics. GB CO2 concentrations showed significant spatial and temporal variability and were highest under the lowest flow and highest temperature conditions. Further, observed GB surface CO2 evasion fluxes, measured CO2 concentrations, and modelled aerobic respiration were highest at the tail of the GB over all conditions. Modelled CO2 transport via streamwater downwelling contributed the largest fraction of the measured GB CO2 concentrations (31% to 48%). This contribution increased its relative share at higher discharges as a result of a decrease in other sources. Also, it decreased from the GB head to tail across all discharge‐temperature conditions. Aerobic respiration accounted for 17% to 36% of measured surface CO2 concentrations. Zoobenthic respiration was estimated to contribute between 4% and 8%, and direct groundwater CO2 inputs 1% to 23%. Unexplained residuals accounted for 6% to 37% of the observed CO2 concentrations at the GB surface. Overall, we highlight the dynamic role of subsurface aerobic respiration as a driver of spatial and temporal variability of CO2 concentrations and evasion fluxes from a GB. As hydrological regimes in prealpine streams are predicted to change following climatic change, we propose that warming temperatures combined with extended periods of low flow will lead to increased CO2 release via enhanced aerobic respiration in newly exposed GBs in prealpine stream corridors.  相似文献   
7.
豫西沙沟脉状Ag-Pb-Zn矿床地质特征和成矿流体研究   总被引:6,自引:1,他引:5  
豫西沙沟薄脉状Ag-Pb-Zn硫化物矿床位于华北陆块南缘熊耳山地区,主要由多金属硫化物-石英-碳酸盐脉型和石英-碳酸盐-绢云母-多金属硫化物蚀变岩型两种矿化类型组成。主要矿脉的矿物共生序列可以分为成矿前的石英-黄铁矿阶段(Ⅰ)、闪锌矿-石英-方铅矿-少量银矿物阶段(Ⅱ1)、方铅矿-石英-闪锌矿-含铁白云石-银矿物阶段(Ⅱ2)和成矿后的方解石-(石英)阶段(Ⅲ)。对不同阶段的成矿流体研究表明,石英-黄铁矿阶段(Ⅰ)中的含氯化钠子晶三相(LVH)包裹体(Ⅰ1)可能是直接从饱和水的结晶岩浆熔体中出溶形成或是由岩浆流体的减压沸腾形成,显示该区很可能存在岩浆流体端元。多金属硫化物阶段(Ⅱ1Ⅱ2)捕获富液相包裹体(LV型)和个别CO2包裹体(C型),这两个阶段流体包裹体反映了主成矿阶段流体的基本特征,结合包裹体气相和液相成分色谱分析以及包裹体初融温度,认为成矿流体应该为中-低温低盐度含CO2的H2O-NaCl体系。其中,阶段(Ⅱ2)的均一温度(145~288℃,平均为194℃)比阶段(Ⅱ1)的均一温度(185~357℃,平均240℃)低46℃;同时,阶段(Ⅱ2)的盐度(1.91%~10.86%,平均6.38%)较阶段(Ⅱ1)盐度(4.65%~10.11%,平均7.77%)略低。对这一温度和盐度的总体下降趋势的合理解释是大气水的逐渐混入。多金属硫化物阶段(Ⅱ1Ⅱ2)之后的方解石-(石英)阶段普遍为富液相包裹体(LV型),该阶段显著降低的温度(129~208℃,平均165℃)和盐度(1.40%~4.03%,平均2.50%),进一步佐证大气水的不断混入。而且,流体混合可能在引起矿石矿物从热液中沉淀方面起到重要作用。  相似文献   
8.
Two morphologic settings in the northwestern Argentine prone to giant mountain-front collapse-deeply incised narrow valleys and steep range fronts bordering broad piedmonts-were analyzed through detailed investigations of fossil landslides and related fluvio-lacustrine sediments. Nine different rhyodactic tephra layers were defined by geochemical fingerprinting of glass, morphology of pumice, stratigraphic relationships, and mineralogy. The age of three tephra could be determined either directly by 40Ar/39Ar dating or relatively by 14C dating of associated sediments: Paranilla Ash (723+/-89 ka), Quebrada del Tonco Ash ( approximately 30 ka), and Alemanía Ash ( approximately 3.7 ka). These units permit correlation of several spatially separate landslide deposits. Landslide deposits in narrow valleys were generated in the late Pleistocene between 40 and 25 ka and in the Holocene since ca. 5 ka and correspond to periods characterized by increased humidity in subtropical South America. In contrast, the age of large landslides in piedmont regions is significantly greater but more difficult to define by tephrochronology. However, selected deposits from this second environment have cosmogenic nuclide exposure ages of 140-400 ka. Because of the large distance of the collapsed mountain fronts from eroding streams and because of important Quaternary displacement along the mountain-bounding faults, we suggest that strong, low-frequency seismic activity is the most likely trigger mechanism for most of the landslides in this environment.  相似文献   
9.
The sensitivity of East African rift lakes to climate fluctuations   总被引:1,自引:0,他引:1  
Sequences of paleo-shorelines and the deposits of rift lakes are used to reconstruct past climate changes in East Africa. These recorders of hydrological changes in the Rift Valley indicate extreme lake-level variations on the order of tens to hundreds of meters during the last 20,000 years. Lake-balance and climate modeling results, on the other hand, suggest relatively moderate changes in the precipitation-evaporation balance during that time interval. What could cause such a disparity? We investigated the physical characteristics and hydrology of lake basins to resolve this difference. Nine closed-basin lakes, Ziway-Shalla, Awassa, Turkana, Suguta, Baringo-Bogoria, Nakuru-Elmenteita, Naivasha, Magadi-Natron, Manyara, and open-basin Lake Victoria in the eastern branch of the East African Rift System (EARS) were used for this study. We created a classification scheme of lake response to climate based on empirical measures of topography (hypsometric integral) and climate (aridity index). With reference to early Holocene lake levels, we found that lakes in the crest of the Ethiopian and Kenyan domes were most sensitive to recording regional climatic shifts. Their hypsometric values fall between 0.23–0.29, in a graben-shaped basin, and their aridity index is above unity (humid). Of the ten lakes, three lakes in the EARS are sensitive lakes: Naivasha (HI = 0.23, AI = 1.20) in the Kenya Rift, Awassa (HI = 0.23, AI = 1.03) and Ziway-Shalla (HI = 0.23, AI = 1.33) in the Main Ethiopian Rift (Main Ethiopian Rift). Two lakes have the graben shape, but lower aridity indices, and thus Lakes Suguta (HI = 0.29, AI = 0.43) and Nakuru-Elmenteita (HI = 0.30, AI = 0.85) are most sensitive to local climate changes. Though relatively shallow and slightly alkaline today, they fluctuated by four to ten times the modern water depth during the last 20,000 years. Five of the study lakes are pan-shaped and experienced lower magnitudes of lake level change during the same time period. Understanding the sensitivity of these lakes is critical in establishing the timing or synchronicity of regional-scale events or trends and predicting future hydrological variations in the wake of global climate changes.  相似文献   
10.
Coral reefs provide a multitude of goods and services, some of which are difficult to value due to their intangible nature and the absence of markets to ascribe their relative worth. The coral reefs of Sodwana Bay on the northeast coast of South Africa provide several ecological goods and services, of which only two are considered here: namely, sediment generation and sediment entrapment. Both are deemed essential to the functioning of the Sodwana Bay economy. The replacement-cost method was used to estimate the annual financial cost of sediment provided to the study area if it were replaced by dredging. Sediment generation by the coral reefs was valued at R2.6–R4.8 million, and sediment entrapment valued at R71.8–R84.6 million, totalling between R74.4 million and R89.4 million (≈$5.6–$6.7 million, at R13.38/US$1) per year.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号