首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地质学   5篇
  2006年   1篇
  2004年   2篇
  2003年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Two apparently distinct, sub-parallel, paleo-subduction zonescan be recognized along the northern margin of the Tibetan Plateau:the North Qilian Suture Zone (oceanic-type) with ophioliticmélanges and high-pressure eclogites and blueschistsin the north, and the North Qaidam Belt (continental-type) inthe south, an ultrahigh-pressure (UHP) metamorphic terrane comprisingpelitic and granitic gneisses, eclogites and garnet peridotites.Eclogites from both belts have protoliths broadly similar tomid-ocean ridge basalts (MORB) or oceanic island basalts (OIB)in composition with overlapping metamorphic ages (480–440Ma, with weighted mean ages of 464 ± 6 Ma for North Qilianand 457 ± 7 Ma for North Qaidam), determined by zirconU–Pb sensitive high-resolution ion microprobe dating.Coesite-bearing zircon grains in pelitic gneisses from the NorthQaidam UHP Belt yield a peak metamorphic age of 423 ±6 Ma, 40 Myr younger than the age of eclogite formation, anda retrograde age of 403 ± 9 Ma. These data, combinedwith regional relationships, allow us to infer that these twoparallel belts may represent an evolutionary sequence from oceanicsubduction to continental collision, and continental underthrusting,to final exhumation. The Qilian–Qaidam Craton was probablya fragment of the Rodinia supercontinent with a passive marginand extended oceanic lithosphere in the north, which was subductedbeneath the North China Craton to depths >100 km at c. 423Ma and exhumed at c. 403 Ma (zircon rim ages in pelitic gneiss). KEY WORDS: HP and UHP rocks; subduction belts; zircon SHRIMP ages; Northern Tibetan Plateau  相似文献   
2.
Tonga and Mariana fore-arc peridotites, inferred to representtheir respective sub-arc mantle lithospheres, are compositionallyhighly depleted (low Fe/Mg) and thus physically buoyant relativeto abyssal peridotites representing normal oceanic lithosphere(high Fe/Mg) formed at ocean ridges. The observation that thedepletion of these fore-arc lithospheres is unrelated to, andpre-dates, the inception of present-day western Pacific subductionzones demonstrates the pre-existence of compositional buoyancycontrast at the sites of these subduction zones. These observationsallow us to suggest that lateral compositional buoyancy contrastwithin the oceanic lithosphere creates the favoured and necessarycondition for subduction initiation. Edges of buoyant oceanicplateaux, for example, mark a compositional buoyancy contrastwithin the oceanic lithosphere. These edges under deviatoriccompression (e.g. ridge push) could develop reverse faults withcombined forces in excess of the oceanic lithosphere strength,allowing the dense normal oceanic lithosphere to sink into theasthenosphere beneath the buoyant overriding oceanic plateaux,i.e. the initiation of subduction zones. We term this conceptthe ‘oceanic plateau model’. This model explainsmany other observations and offers testable hypotheses on importantgeodynamic problems on a global scale. These include (1) theorigin of the 43 Ma bend along the Hawaii–Emperor SeamountChain in the Pacific, (2) mechanisms of ophiolite emplacement,(3) continental accretion, etc. Subduction initiation is notunique to oceanic plateaux, but the plateau model well illustratesthe importance of the compositional buoyancy contrast withinthe lithosphere for subduction initiation. Most portions ofpassive continental margins, such as in the Atlantic where largecompositional buoyancy contrast exists, are the loci of futuresubduction zones. KEY WORDS: subduction initiation; compositional buoyancy contrast; oceanic lithosphere; plate tectonics; mantle plumes; hotspots; oceanic plateaux; passive continental margins; continental accretion; mantle peridotites; ophiolites  相似文献   
3.
NIU  YAOLING 《Journal of Petrology》2004,45(12):2423-2458
This paper presents the first comprehensive major and traceelement data for 130 abyssal peridotite samples from the Pacificand Indian ocean ridge–transform systems. The data revealimportant features about the petrogenesis of these rocks, mantlemelting and melt extraction processes beneath ocean ridges,and elemental behaviours. Although abyssal peridotites are serpentinized,and have also experienced seafloor weathering, magmatic signaturesremain well preserved in the bulk-rock compositions. The betterinverse correlation of MgO with progressively heavier rare earthelements (REE) reflects varying amounts of melt depletion. Thismelt depletion may result from recent sub-ridge mantle melting,but could also be inherited from previous melt extraction eventsfrom the fertile mantle source. Light REE (LREE) in bulk-rocksamples are more enriched, not more depleted, than in the constituentclinopyroxenes (cpx) of the same sample suites. If the cpx LREErecord sub-ridge mantle melting processes, then the bulk-rockLREE must reflect post-melting refertilization. The significantcorrelations of LREE (e.g. La, Ce, Pr, Nd) with immobile highfield strength elements (HFSE, e.g. Nb and Zr) suggest thatenrichments of both LREE and HFSE resulted from a common magmaticprocess. The refertilization takes place in the ‘cold’thermal boundary layer (TBL) beneath ridges through which theascending melts migrate and interact with the advanced residues.The refertilization apparently did not affect the cpx relicsanalyzed for trace elements. This observation suggests grain-boundaryporous melt migration in the TBL. The ascending melts may notbe thermally ‘reactive’, and thus may have affectedonly cpx rims, which, together with precipitated olivine, entrappedmelt, and the rest of the rock, were subsequently serpentinized.Very large variations in bulk-rock Zr/Hf and Nb/Ta ratios areobserved, which are unexpected. The correlation between thetwo ratios is consistent with observations on basalts that DZr/DHf< 1 and DNb/DTa < 1. Given the identical charges (5+ forNb and Ta; 4+ for Zr and Hf) and essentially the same ionicradii (RNb/RTa = 1·000 and RZr/RHf = 1·006–1·026),yet a factor of 2 mass differences (MZr/MHf = 0·511 andMNb/MTa = 0·513), it is hypothesized that mass-dependentD values, or diffusion or mass-transfer rates may be importantin causing elemental fractionations during porous melt migrationin the TBL. It is also possible that some ‘exotic’phases with highly fractionated Zr/Hf and Nb/Ta ratios may existin these rocks, thus having ‘nugget’ effects onthe bulk-rock analyses. All these hypotheses need testing byconstraining the storage and distribution of all the incompatibletrace elements in mantle peridotite. As serpentine containsup to 13 wt % H2O, and is stable up to 7 GPa before it is transformedto dense hydrous magnesium silicate phases that are stable atpressures of 5–50 GPa, it is possible that the serpentinizedperidotites may survive, at least partly, subduction-zone dehydration,and transport large amounts of H2O (also Ba, Rb, Cs, K, U, Sr,Pb, etc. with elevated U/Pb ratios) into the deep mantle. Thelatter may contribute to the HIMU component in the source regionsof some oceanic basalts. KEY WORDS: abyssal peridotites; serpentinization; seafloor weathering; bulk-rock major and trace element compositions; mantle melting; melt extraction; melt–residue interaction; porous flows; Nb/Ta and Zr/Hf fractionations; HIMU mantle sources  相似文献   
4.
We report petrological and geochemical data on ultramafic pillowlavas from Late Palaeozoic marine sequences in Yunnan, SW China.These lavas have >26 wt % MgO, euhedral to subhedral olivinephenocrysts and acicular or quench clinopyroxene crystals withor without microlitic plagioclase in a devitrified and alteredglassy matrix. These ultramafic lavas are compositionally komatiitic(>18 wt % MgO), but we term them high-Mg picrites becausethey lack spinifex-textured olivine. Although olivines in thesepicrites are cumulate crystals, causing the high MgO contentsof the bulk rocks, the high forsterite content of these olivines,Fo = 0·902 ± 0·011, suggests that the primitivemagmas parental to the picrites would have had  相似文献   
5.
A VOLUME IN HONOUR OF THE WORK OF MICHAEL J. O'HARA, ON THE OCCASION OF HIS 70TH BIRTHDAY The 20th century was eventful inall areas of Earth Science. Continental drift and sea-floorspreading became embodied in the theory of plate tectonics,isotopically heterogeneous mantle was recognized as a by-productof plate tectonics, large igneous provinces were identifiedas possibly originating from mantle plumes - the list goes on.One thing these revolutions have in common is the process ofscientific debate - which Mike O'Hara has stimulated vigorouslyin the field of  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号