首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   15篇
  国内免费   6篇
测绘学   32篇
大气科学   18篇
地球物理   113篇
地质学   84篇
海洋学   26篇
天文学   39篇
综合类   3篇
自然地理   6篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   7篇
  2018年   14篇
  2017年   18篇
  2016年   17篇
  2015年   15篇
  2014年   14篇
  2013年   18篇
  2012年   17篇
  2011年   15篇
  2010年   11篇
  2009年   14篇
  2008年   18篇
  2007年   14篇
  2006年   11篇
  2005年   10篇
  2004年   5篇
  2003年   9篇
  2002年   7篇
  2001年   8篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   5篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   6篇
  1990年   3篇
  1989年   7篇
  1988年   2篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1983年   3篇
  1982年   5篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   5篇
  1973年   3篇
  1972年   2篇
排序方式: 共有321条查询结果,搜索用时 15 毫秒
1.
Sattar  Ashim  Goswami  Ajanta  Kulkarni  Anil V. 《Natural Hazards》2019,98(2):817-817
Natural Hazards - The article was published with the citation “Worni et al. (2012)”. The author group of the article would like readers to know that this information should instead...  相似文献   
2.
Using long-term optical, ultraviolet(UV) and X-ray data, we present a study of a classical T Tauri star CV Cha. The V-band light curve obtained from the All Sky Automated Survey(ASAS) shows short as well as long-term variability. The short-term variability could be due to rotational modulation of CV Cha. We derive the rotational period of 3.714 ± 0.001 d for CV Cha. UV light curves obtained from Swift also show the variations. X-ray light curves from XMM-Newton and Swift do not show any significant short as well as long-term variability. However, the light curve from Chandra appears to be variable, which could be due to the emergence of flaring activities. X-ray spectra from all observations are explained well by the single temperature plasma of 0.95 keV with X-ray luminosity of 1030.4erg s-1in the 0.5–7.5 keV energy band. It appears that variability in optical and UV bands could be due to the presence of both hot and cool spots on the surface, while X-ray emission is dominated by magnetic processes.  相似文献   
3.
Malik  Anurag  Kumar  Anil  Kisi  Ozgur  Khan  Najeebullah  Salih  Sinan Q.  Yaseen  Zaher Mundher 《Natural Hazards》2021,105(2):1643-1662
Natural Hazards - Drought is a complex natural disaster that adversely affects human life and the ecosystem. A variety of drought indexes are available for monitoring meteorological drought events....  相似文献   
4.
The modal pushover analysis (MPA) procedure, presently restricted to one horizontal component of ground motion, is extended to three‐dimensional analysis of buildings—symmetric or unsymmetric in plan—subjected to two horizontal components of ground motion, simultaneously. Also presented is a variant of this method, called the practical modal pushover analysis (PMPA) procedure, which estimates seismic demands directly from the earthquake response (or design) spectrum. Its accuracy in estimating seismic demands for very tall buildings is evaluated, demonstrating that for nonlinear systems this procedure is almost as accurate as the response spectrum analysis procedure is for linear systems. Thus, for practical applications, the PMPA procedure offers an attractive alternative whereby seismic demands can be estimated directly from the (elastic) design spectrum, thus avoiding the complications of selecting and scaling ground motions for nonlinear response history analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
5.
Cropping system study is not only useful to understand the overall sustainability of agricultural system, but also it helps in generating many important parameters which are useful in climate change impact assessment. Considering its importance, Space Applications Centre, took up a project for mapping and characterizing major cropping systems of Indo-Gangetic Plains of India. The study area included the five states of Indo-Gangetic Plains (IGP) of India, i.e. Punjab, Haryana, Uttar Pradesh, Bihar and West Bengal. There were two aspects of the study. The first aspect included state and district level cropping system mapping using multi-date remote sensing (IRS-AWiFS and Radarsat ScanSAR) data. The second part was to characterize the cropping system using moderate spatial resolution multi-date remote sensing data (SPOT VGT NDVI) and ground survey. The remote sensing data was used to compute three cropping system performance indices (Multiple Cropping Index, Area Diversity Index and Cultivated Land Utilization Index). Ground survey was conducted using questionnaires filled up by 1,000 farmers selected from 103 villages based on the cropping systems map. Apart from ground survey, soil and water sampling and quality analysis were carried out to understand the effect of different cropping systems and their management practices. The results showed that, rice-wheat was the major cropping system of the IGP, followed by Rice-Fallow-Fallow and Maize-Wheat. Other major cropping systems of IGP included Sugarcane based, Pearl millet-Wheat, Rice-Fallow-Rice, Cotton-Wheat. The ground survey could identify 77 cropping systems, out of which 38 are rice-based systems. Out of these 77 cropping systems, there were 5 single crop systems, occupying 6.5% coverage (of all cropping system area), 56 double crop systems with 72.7% coverage, and 16 triple crop systems with 20.8% coverage. The cropping system performance analysis showed that the crop diversity was found to be highest in Haryana, while the cropping intensity was highest in Punjab state.  相似文献   
6.
Sudden short-duration decreases in cosmic ray flux, known as Forbush decreases (FDs), are mainly caused by interplanetary disturbances. A generally accepted view is that the first step of an FD is caused by a shock sheath and the second step is due to the magnetic cloud (MC) of the interplanetary coronal mass ejection (ICME). This simplistic picture does not consider several physical aspects, such as whether the complete shock sheath or MC (or only part of these) contributes to the decrease or the effect of internal structure within the shock-sheath region or MC. We present an analysis of 16 large (\({\geq}\,8 \%\)) FD events and the associated ICMEs, a majority of which show multiple steps in the FD profile. We propose a reclassification of FD events according to the number of steps observed in their respective profiles and according to the physical origin of these steps. This study determines that 13 out of 16 major events (\({\sim}\,81\%\)) can be explained completely or partially on the basis of the classic FD model. However, it cannot explain all the steps observed in these events. Our analysis clearly indicates that not only broad regions (shock sheath and MC), but also localized structures within the shock sheath and MC have a significant role in influencing the FD profile. The detailed analysis in the present work is expected to contribute toward a better understanding of the relationship between FD and ICME parameters.  相似文献   
7.
We report the in-orbit performance of Scanning Sky Monitor (SSM) onboard AstroSat. The SSM operates in the energy range 2.5 to 10 keV and scans the sky to detect and locate transient X-ray sources. This information of any interesting phenomenon in the X-ray sky as observed by SSM is provided to the astronomical community for follow-up observations. Following the launch of AstroSat on 28th September, 2015, SSM was commissioned on October 12th, 2015. The first power ON of the instrument was with the standard X-ray source, Crab in the field-of-view. The first orbit data revealed the basic expected performance of one of the detectors of SSM, SSM1. Following this in the subsequent orbits, the other detectors were also powered ON to find them perform in good health. Quick checks of the data from the first few orbits revealed that the instrument performed with the expected angular resolution of 12’ \(\times \) 2.5\(^\circ \) and effective area in the energy range of interest. This paper discusses the instrument aspects along with few on-board results immediately after power ON.  相似文献   
8.
Deo  Anil  Chand  Savin S.  Ramsay  Hamish  Holbrook  Neil J.  McGree  Simon  Magee  Andrew  Bell  Samuel  Titimaea  Mulipola  Haruhiru  Alick  Malsale  Philip  Mulitalo  Silipa  Daphne  Arieta  Prakash  Bipen  Vainikolo  Vaiola  Koshiba  Shirley 《Climate Dynamics》2021,56(11):3967-3993

Southwest Pacific nations are among some of the worst impacted and most vulnerable globally in terms of tropical cyclone (TC)-induced flooding and accompanying risks. This study objectively quantifies the fractional contribution of TCs to extreme rainfall (hereafter, TC contributions) in the context of climate variability and change. We show that TC contributions to extreme rainfall are substantially enhanced during active phases of the Madden–Julian Oscillation and by El Niño conditions (particularly over the eastern southwest Pacific region); this enhancement is primarily attributed to increased TC activity during these event periods. There are also indications of increasing intensities of TC-induced extreme rainfall events over the past few decades. A key part of this work involves development of sophisticated Bayesian regression models for individual island nations in order to better understand the synergistic relationships between TC-induced extreme rainfall and combinations of various climatic drivers that modulate the relationship. Such models are found to be very useful for not only assessing probabilities of TC- and non-TC induced extreme rainfall events but also evaluating probabilities of extreme rainfall for cases with different underlying climatic conditions. For example, TC-induced extreme rainfall probability over Samoa can vary from ~ 95 to ~ 75% during a La Niña period, if it coincides with an active or inactive phase of the MJO, and can be reduced to ~ 30% during a combination of El Niño period and inactive phase of the MJO. Several other such cases have been assessed for different island nations, providing information that have potentially important implications for planning and preparing for TC risks in vulnerable Pacific Island nations.

  相似文献   
9.
For a ship hull with large deck openings such as container vessels and some large bulk carriers, the analysis of warping stresses and hatch opening deformations is an essential part of ship structural analyses. It is thus of importance to better understand the ultimate torsional strength characteristics of ships with large hatch openings. The primary aim of the present study is to investigate the ultimate strength characteristics of ship hulls with large hatch openings under torsion. Axial (warping) as well as shear stresses are normally developed for thin-walled beams with open cross sections subjected to torsion. A procedure for calculating these stresses is briefly described. As an illustrative example, the distribution and magnitude of warping and shear stresses for a typical container vessel hull cross section under unit torsion is calculated by the procedure. By theoretical and numerical analyses, it is shown that the influence of torsion induced warping stresses on the ultimate hull girder bending strength is small for ductile hull materials while torsion induced shear stresses will of course reduce the ship hull ultimate bending moment.  相似文献   
10.
Rock-magnetic measurements along with grain size, acid-insoluble residue (AIR), organic carbon (OC), CaCO3 and δ18O of the planktonic foraminifers of the sediments were determined for 15 gravity cores recovered from the western continental margin of India. Magnetic susceptibility (MS) values in the surficial sediments reflect the land-derived input and, in general, are the highest in terrigenous sediment-dominated sections of the cores off Saurashtra–Ratnagiri, followed by the sediments off Indus–Gulf of Kachchh and then Mangalore–Cape Comorin.

The down-core variations in mineral magnetic parameters reveal that the glacial sediments off the Indus are characterized by low MS values/S-ratios associated with high AIR-content, low OC/CaCO3 contents and relatively high δ18O values, while those off SW India are characterized by low MS values/high S-ratio% associated with low AIR content, and relatively high OC, CaCO3 and δ18O values. Conversely, the Early Holocene sediments of all cores are characterized by high MS values/S-ratio% associated with high AIR content, low OC, CaCO3 contents and gradually decreased δ18O values. These results imply that during the Last Glacial Maximum (LGM), the cores off northwestern India received abundant continental supply leading to the predominance of eolian/fluvial sedimentation. In the SW region the influence of hinterland flux is less evident during this period, but convective mixing associated with the NE monsoon resulted in increased productivity. During the early Holocene intense SW monsoon conditions resulted in high precipitation on land, which in turn contributed increased AIR content/MS values in the continental margin sediments. A shallow water core off Kochi further suggests that the intense SW monsoon conditions prevailed until about 5 ka. The late Holocene organic-rich sediments of the SW margin of India were, however, subjected to early diagenesis at different intervals in the cores. Therefore, caution is needed when interpreting regional climatic change from down-core changes in sediment magnetic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号