首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
地球物理   2篇
地质学   7篇
海洋学   1篇
  2018年   1篇
  2016年   2篇
  2006年   1篇
  2004年   2篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
排序方式: 共有10条查询结果,搜索用时 46 毫秒
1
1.
In this paper we examine the use of bathymetric sidescan sonar for automatic classification of seabed sediments. Bathymetric sidescan sonar, here implemented through a small receiver array, retains the advantage of sidescan in speed through illuminating large swaths, but also enables the data gathered to be located spatially. The spatial location allows the image intensity to be corrected for depth and insonification angle, thus improving the use of the sonar for identifying changes in seafloor sediment. In this paper we investigate automatic tools for seabed recognition, using wavelets to analyse the image of Hopvågen Bay in Norway. We use the back-propagation elimination algorithm to determine the most significant wavelet features for discrimination. We show that the features selected present good agreement with the grab sample results in the survey under study and can be used in a classifier to discriminate between different seabed sediments.  相似文献   
2.
For the last four decades, the level of the Dead Sea has been subjected to continual variation which, among other important factors, has led to the occurrence of much subsidence and many sinkholes in the southern Dead Sea area. Sinkhole activities occurred repetitively and were observed in open farms, across roads, near dwellings and near an existing factory, thus causing a serious threat to the locals and farmers of the area and their properties. This paper presents the main results from detailed geological and geotechnical studies of this area. Aerial photo interpretation and borehole drilling aided these studies. Parallel geophysical investigations (vertical electrical sounding and seismic refraction) and hydrological and hydrogeological studies were made by others in the same area to also investigate this phenomenon. It was found that sinkholes are aligned to and follow old water channels and are concentrated parallel to the recent shoreline of the Dead Sea. The development of subsurface cavities is associated mainly with the variation in the level of the Dead Sea over the four past decades, the presence of regional salt intrusion under the surface of salt beds, the fluctuation of the water table and continuous dissolution and the active tectonism of the area. Moreover, this work showed that the area is still under active sinkhole hazards and other parts of the area will be inevitably affected by sinkholes in the future.No practical engineering solution to this problem is feasible. Received: 1 July 1999 / Accepted: 11 October 1999  相似文献   
3.
4.
The number and intensity of water-related disasters are increasing tremendously. Floods and inundations in the Mediterranean countries are often caused by torrential rains. In Algeria, floods have left more than 1000 dead and caused loss of around 550 million euros. In Mekerra Basin, northwestern Algeria, the flooding risk is growing. This paper diagnoses the causes and the flood damage that generates Wadi Mekerra. Besides, the legislative texts are also discussed. Predicting the flooding risk is done through numerical modeling of two typical flood waves. It is a comparison between two numerical models, Van Leer finite volume scheme and Petrov Galarkin finite element scheme with recorded hydrographs. Based on these results, several additional actions are recommended at the end of this work.  相似文献   
5.
Road instability along the Jerash–Amman highway was assessed using the weighted overlay method in Geographic Information System environment. The landslide susceptibility map was developed from nine contributing parameters. The map of landslide susceptibility was classified into five zones: very low (very stable), low (stable), moderate (moderately stable), high (unstable), and very high (highly unstable). The very high susceptibility and high susceptibility zones covered 15.14% and 31.81% of the study area, respectively. The main factors that made most parts of study area prone to landslides include excessive drainage channels, road cuts, and unfavorable rock strata such as marl and friable sandstone intercalated with clay and highly fractured limestone. Fracture zones are a major player in land instability. The moderate and high susceptibility zones are the most common in urban (e.g., Salhoub and Gaza camp) and agricultural areas. About 34% of the urban areas and 28.82% of the agricultural areas are characterized by the high susceptibility zone. Twenty percent of the Jerash–Amman highway length and 58% of the overall highway length are located in the very high susceptibility zone. The landslide susceptibility map was validated by the recorded landslides. More than 80 of the inventoried landslides are in unstable zones, which indicate that the selected causative factors are relevant and the model performs properly.  相似文献   
6.
This paper presents the first paleostress results from fault-slip data on Cretaceous limestone at the eastern rim of the Dead Sea transform (DST) in Jordan. Stress inversion of fault-slip data is performed using an improved right dieder method, followed by rotational optimization (Delvaux, TENSOR Program). The orientation of the principal stress axes (σ1, σ2 and σ3) and the ratio of the principal stress differences ( ) show two main paleostress fields marking two main stress regimes, strike-slip and extensional. The first is characterized by NNW–SSE compression and ENE–WSW extension and related to Middle Miocene-Recent sinistral movement along the Dead Sea transform and the opening of the Red Sea. The second paleostress field is a WNW–ESE compression and NNE–SSW extension restricted to the northern part of the investigated area. This stress field could be associated with the development of the Syrian Arc fold belt which started during the Turonian, or it may be due to an anticlockwise rotation of the first stress field.  相似文献   
7.
The archaeological site of Qasr Tilah, in the Wadi Araba, Jordan is located on the northern Wadi Araba fault segment of the Dead Sea Transform. The site contains a Roman-period fort, a late Byzantine–Early Umayyad birkeh (water reservoir) and aqueduct, and agricultural fields. The birkeh and aqueduct are left-laterally offset by coseismic slip across the northern Wadi Araba fault. Using paleoseismic and archaeological evidence collected from a trench excavated across the fault zone, we identified evidence for four ground-rupturing earthquakes. Radiocarbon dating from key stratigraphic horizons and relative dating using potsherds constrains the dates of the four earthquakes from the sixth to the nineteenth centuries. Individual earthquakes were dated to the seventh, ninth and eleventh centuries. The fault strand that slipped during the most recent event (MRE) extends to just below the modern ground surface and juxtaposes alluvial-fan sediments that lack in datable material with the modern ground surface, thus preventing us from dating the MRE except to constrain the event to post-eleventh century. These data suggest that the historical earthquakes of 634 or 659/660, 873, 1068, and 1546 probably ruptured this fault segment.  相似文献   
8.
Twelve radon lines of dosimeters (detectors) were placed across the Jordan Valley active fault, which is a segment of the active Dead Sea transform fault system. Each line of the dosimeters shows one or more peaks of radon anomaly concentrations. Some of these peaks prove the intersection of the fault trace with these lines in areas where the fault plane is inferred. In other lines, the peaks correspond to the arrangement of faults in areas of pull-apart basins (sag ponds) or pressure ridges, formed due to the left or right step of the fault. Sag ponds usually show low radon emanations, because they are the place for the accumulation of very fine sediments, which decreases their porosity and hence the upward migration of the radon gas. The northern part of the Jordan Valley relatively shows high radon emanation, which could be attributed to the presence of a seismic gap in the upper Jordan valley.  相似文献   
9.
The Wadi Araba Valley is a morphotectonic depression along part of theDead Sea Transform (DST) plate boundary that separates the Arabian plateon the east from the Sinai subplate on the west. The Wadi Araba fault(WAF) is the main strike-slip faults one of between the Gulf of Aqaba and the E-Wtrending Khunayzira (Amatzayahu) fault that bounds the southern end ofthe Dead Sea. Just south of the Dead Sea, the WAF cuts across severalgenerations of alluvial fans that formed on tributaries to the Wadi Dahalafter the regression of Late Pleistocene Lake Lisan ca. 15 ka. Geomorphicand stratigraphic evidence of active faulting, including left-laterally offsetstream channels and alluvial-fan surfaces, yielded fault slip-rate data for thenorthern segment of WAF. Typical cumulative displacements of 54 m,39 m, and 22.5 m of stream channels and alluvial-fan surfaces acrossthe fault were measured from detailed geologic and topographic mapping.The 54 m offset of the oldest alluvial-fan surface (Q f1 ) occurredafter the final lowering of Lake Lisan (16–15 ka) and before 11 ka yieldinga slip-rate range of 3.4 mm/yr to 4.9 mm/yr. Based on radiocarbonages of charcoal and landsnail shell samples from the buried Q f2 alluvial-fan deposits exposed in trenches excavated across the fault, the39 m and 22.5 m offsets occurred after 9 ka and 5.8 ka, respectively. These data yield a slip-rate range between 3.9 mm/yr and 6.0 mm/yr.The small variability in these slip-rate estimates for different time periodssuggests that the northern Wadi Araba fault has maintained a relativelyconstant slip rate in the past 15 ka. We calculate an average slip rate of 4.7± 1.3 mm/yr since 15 ka based on the three separate displacementsand age estimates. Five separate offsets of 3 m were measured from gullybends and the offset of small fault-scarp alluvial fans. These displacementdata suggest a coseismic slip of 3 m in the last earthquake, or acumulative slip of 3 m in the past few earthquakes. A maximum slip of3 m correspond to a Mw 7 earthquake that ruptures about 49 km offault length. Using an average slip rate of 4.7 ± 1.3 mm/yr togetherwith a 3-m slip-per-event suggests a maximum earthquake recurrence intervalof this fault segment of 500 to 885 years.  相似文献   
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号