首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
  国内免费   3篇
地球物理   6篇
地质学   18篇
海洋学   3篇
  2021年   4篇
  2020年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2007年   3篇
  2006年   1篇
  2004年   2篇
  1991年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
In this paper we analyze seismic regime and earthquake depth distribution and correlation of seismicity and mud volcanism in the Azerbaijan and the Caspian Sea region. For the present region we have calculated accurate source locations, seismic activity, earthquake repetition and released earthquake energy parameters. It is shown that the active tectonic processes in the region are concentrated within the thick sedimentary cover that we consider as a general source of contemporary stress and a main structural element responsible for the origin of regional earthquakes. The correlation of seismicity and mud volcanism is of paragenetic character.  相似文献   
2.
As threats of landslide hazards have become gradually more severe in recent decades,studies on landslide prevention and mitigation have attracted widespread attention in relevant domains.A hot research topic has been the ability to predict landslide susceptibility,which can be used to design schemes of land exploitation and urban development in mountainous areas.In this study,the teaching-learning-based optimization(TLBO)and satin bowerbird optimizer(SBO)algorithms were applied to optimize the adaptive neuro-fuzzy inference system(ANFIS)model for landslide susceptibility mapping.In the study area,152 landslides were identified and randomly divided into two groups as training(70%)and validation(30%)dataset.Additionally,a total of fifteen landslide influencing factors were selected.The relative importance and weights of various influencing factors were determined using the step-wise weight assessment ratio analysis(SWARA)method.Finally,the comprehensive performance of the two models was validated and compared using various indexes,such as the root mean square error(RMSE),processing time,convergence,and area under receiver operating characteristic curves(AUROC).The results demonstrated that the AUROC values of the ANFIS,ANFIS-TLBO and ANFIS-SBO models with the training data were 0.808,0.785 and 0.755,respectively.In terms of the validation dataset,the ANFISSBO model exhibited a higher AUROC value of 0.781,while the AUROC value of the ANFIS-TLBO and ANFIS models were 0.749 and 0.681,respectively.Moreover,the ANFIS-SBO model showed lower RMSE values for the validation dataset,indicating that the SBO algorithm had a better optimization capability.Meanwhile,the processing time and convergence of the ANFIS-SBO model were far superior to those of the ANFIS-TLBO model.Therefore,both the ensemble models proposed in this paper can generate adequate results,and the ANFIS-SBO model is recommended as the more suitable model for landslide susceptibility assessment in the study area considered due to its excellent accuracy and efficiency.  相似文献   
3.
Evaluation of seismic ground motion induced by topographic irregularity   总被引:1,自引:0,他引:1  
Results of an extensive numerical study on the 2D scattering of seismic waves by local topography are presented. The investigation has been conducted using the direct boundary element method. Several types of topography (slopes, canyons and ridges) are considered. The influences of some key parameters, such as exciting frequency and geometry of the irregular feature, on surface ground motion are studied in detail. It is found that local topographic conditions play an important role in the modification of seismic ground motion at the irregular feature itself and its neighbourhood. The present results can be considered to be useful from the viewpoint of earthquake engineering and seismology.  相似文献   
4.
By using the Mellin transform, a general solution is obtained for the total stresses and pore pressure distribution in an infinite wedge under fairly general conditions of loading. The results for the particular case in which each surface is subjected to static sinusoidal pressures are given in an explicit form. The infinite integrals can be evaluated by numerical integration methods. This analytical method is verified by different cases. The results of this study could be used to determine the total stresses and pore pressures induced by a wave on a sloping seabed.  相似文献   
5.
This work presents the first attempt to develop unconditionally stable, implicit finite difference solutions of one-sided spatial fractional advection-dispersion equation (s-FADE) by imposing the nonzero Dirichlet boundary condition (ND BC) or the nonzero fractional Robin boundary condition (NFR BC) at inlet boundary and the zero fractional Neumann boundary condition (ZFN BC) at outlet boundary. The results of the numerical studies performed using artificial solute transport parameters demonstrated that the numerical solution with the NFR BC as the inlet boundary produced much more realistic concentration values. The numerical solution with the NFR BC at the inlet boundary was capable of correctly describing the Fickian and non-Fickian behaviors of the solute transport at different α values, and it had the relatively same accuracy at different numbers of the spatial nodes. Also, the practical application of the numerical solution with the NFR BC as the inlet boundary was investigated by conducting tracer experiments in homogeneous and heterogeneous soil columns. According to the obtained results, this numerical solution described well solute transport in the homogenous and heterogeneous soils. The α values of the homogeneous and heterogeneous soils were obtained in the ranges of 1.849–1.999 and 1.248–1.570, respectively, which were in excellent agreement with the physical properties of the soils. In a nutshell, the numerical solution of the s-FADE with the NFR BC as the inlet boundary can be successfully applied to describe the solute transport in the homogeneous and heterogeneous soils with bounded spatial domains.  相似文献   
6.
Iran is one of the most seismically active countries of the world located on the Alpine-Himalayan earthquake belt. More than 180,000 people were killed due to earthquakes in Iran during the last five decades. Considering the fact that most Iranians live in masonry and non-engineered houses, having a comprehensive program for decreasing the vulnerability of society holds considerable importance. For this reason, loss estimation should be done before an earthquake strikes to prepare proper information for designing and selection of emergency plans and the retrofitting strategies prior to occurrence of earthquake. The loss estimation process consists of two principal steps of hazard analysis and vulnerability assessment. After identifying the earthquake hazard, the first step is to evaluate the vulnerability of residential buildings and lifelines and also the social and economic impacts of the earthquake scenarios. Among these, residential buildings have specific importance, because their destruction will disturb the daily life and result in casualties. Consequently, the vulnerability assessment of the buildings in Iran is important to identify the weak points in the built environment structure. The aim of this research is to prepare vulnerability curves for the residential buildings of Iran to provide a proper base for estimating probable damage features by future earthquakes. The estimation may contribute fundamentally for better seismic performance of Iranian societies. After a brief review of the vulnerability assessment methods in Iran and other countries, through the use of the European Macroseismic method, a model for evaluating the vulnerability of the Iranian buildings is proposed. This method allows the vulnerability assessment for numerous sets of buildings by defining the vulnerability curves for each building type based on the damage observations of previous earthquakes. For defining the vulnerability curves, a building typology classification is presented in this article, which is representative of Iranian building characteristics. The hazard is described in terms of the macroseismic intensity and the EMS-98 damage grades have been considered for classifying the physical damage to the buildings. The calculated vulnerability indexes and vulnerability curves show that for engineered houses there is not any notable difference between the vulnerability of Iranian and Risk-UE building types. For the non-engineered houses, the vulnerability index of brick and steel structures is less than the corresponding values of the other unreinforced masonry buildings of Iran. The vulnerability index of unreinforced and masonry buildings of Iran are larger than the values of the similar types in Risk-UE and so the Iranian buildings are more vulnerable in this regard.  相似文献   
7.
In this paper the coupled equations governing the dynamic behavior of unsaturated soils are derived based on the poromechanics theory within the framework of the suction-based mathematical model presented by Gatmiri (1997) [Gatmiri B. Analysis of fully coupled behavior of unsaturated porous medium under stress, suction and temperature gradient. Final report of CERMES-EDF, 1997] and Gatmiri et al. (1998) [Gatmiri B, Delage P, Cerrolaza M, UDAM: a powerful finite element software for the analysis of unsaturated porous media. Adv Eng Software 1998; 29(1): 29–43]. In this formulation, the solid skeleton displacements, water pressure and air pressure are presumed to be independent variables. The Boundary Integral formulations as well as fundamental solutions for such a dynamic upwpa theory are presented in this paper for the first time. The boundary integral equations are derived via the use of the weighted residuals method in a way that permits an easy discretization and implementation in a Boundary Element code. Also, the associated two dimensional (2D) fundamental solutions for such deformable porous medium with linear elastic behavior are derived in Laplace transform domain using the method of Hörmander. Finally, some numerical results are presented to show the accuracy of the proposed solutions. The derived results are verified analytically by comparison with the previously introduced corresponding fundamental solutions in elastodynamic limiting case.  相似文献   
8.
A chelating resin is prepared by condensation polymerization of aniline with formaldehyde and characterized by Fourier transform infrared spectrometer, elemental analysis and thermogravimetric analysis and studied for the preconcentration and determination of trace Molybdate ion from environmental water sample using inductive couple plasma atomic emission spectroscopy. The optimum pH value for sorption of the metal ion was 5. The sorption capacity of functionalized resin is 3.1 mg/g. The chelating sorbent can be reused for 20 cycles of sorption-desorption without any significant change in sorption capacity. The best desorption of the metal ions from resin was obtained by 0.5 mol/L nitric acid as eluting agent. The profile of molybdenum uptake on this sorbent reflects good accessibility of the chelating sites in the aniline-formaldehyde. Scatchard analysis revealed that the homogeneous binding sites were formed in the polymers. The equilibrium adsorption data of Molybdate ion modified resin were analyzed by five isotherm models such as Langmuir, Freundlich and Temkin. Langmuir isotherm parameters obtained from the four Langmuir linear equations by using linear method. Based on the Langmuir isotherm analysis, the monolayer adsorption capacity was determined to be 4.03 mg/g at 20 °C. The method was applied for molybdenum ions determination from river water sample.  相似文献   
9.
Successful applications of stochastic models for simulating and predicting daily stream temperature have been reported in the literature. These stochastic models have been generally tested on small rivers and have used only air temperature as an exogenous variable. This study investigates the stochastic modelling of daily mean stream water temperatures on the Moisie River, a relatively large unregulated river located in Québec, Canada. The objective of the study is to compare different stochastic approaches previously used on small streams to relate mean daily water temperatures to air temperatures and streamflow indices. Various stochastic approaches are used to model the water temperature residuals, representing short‐term variations, which were obtained by subtracting the seasonal components from water temperature time‐series. The first three models, a multiple regression, a second‐order autoregressive model, and a Box and Jenkins model, used only lagged air temperature residuals as exogenous variables. The root‐mean‐square error (RMSE) for these models varied between 0·53 and 1·70 °C and the second‐order autoregressive model provided the best results. A statistical methodology using best subsets regression is proposed to model the combined effect of discharge and air temperature on stream temperatures. Various streamflow indices were considered as additional independent variables, and models with different number of variables were tested. The results indicated that the best model included relative change in flow as the most important streamflow index. The RMSE for this model was of the order of 0·51 °C, which shows a small improvement over the first three models that did not include streamflow indices. The ridge regression was applied to this model to alleviate the potential statistical inadequacies associated with multicollinearity. The amplitude and sign of the ridge regression coefficients seem to be more in agreement with prior expectations (e.g. positive correlation between water temperature residuals of different lags) and make more physical sense. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
10.
In this paper, an improved boundary element approach for 2D elastodynamics in time‐domain is presented. This approach consists in the truncation of time integrations, based on the rapid decrease of the fundamental solutions with time. It is shown that an important reduction of the computation time as well as the storage requirement can be achieved. Moreover, for half‐plane problems, the size of boundary element (BE) meshes and the computation time can be significantly reduced. The proposed approach is used to study the seismic response of slopes subjected to incident SV waves. It is found that large amplifications take place on the upper surface close to the slope, while attenuations are produced on the lower surface. The results also show that surface motions become very complex when the incident wavelength is comparable with the size of the slope or when the slope is steep. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号