首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   1篇
地质学   1篇
海洋学   3篇
  2023年   1篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
排序方式: 共有5条查询结果,搜索用时 11 毫秒
1
1.
Bhavya  P. S.  Min  Jun-Oh  Kim  Min-Seob  Jang  Hyo Keun  Kim  Kwanwoo  Kang  Jae Joong  Lee  Jae Hyung  Lee  Dabin  Jo  Naeun  Kim  Myung Joon  Kim  Yejin  Lee  Junbeom  Lee  Chang Hwa  Bae  Hyeonji  Yoo  Hyeju  Park  Sanghoon  Yun  Mi Sun  Lee  Sang Heon 《Ocean Science Journal》2019,54(4):515-528
Ocean Science Journal - Investigations on marine N2 fixation have gained momentum since 1960s with eventual establishments of relevant methodologies to identify species involved and quantify the...  相似文献   
2.
The biochemical composition of particulate organic matter (POM) is very important to understand in relation to the trophic conditions of marine ecosystems since it forms the primary trophic base. The present study investigated the biochemical compositions (i.e., carbohydrates, proteins, and lipids) of POM monthly from January to December 2015 in Geoje-Hansan Bay to determine if the macromolecular composition of POM is coupled between the water columns and sediment. A spatial difference in the macromolecular compositions was observed in the water columns between the inner and outer bays, which may be caused by the different physiological conditions of phytoplankton growth that are due to the water circulation pattern in the bay. In contrast, no distinctive spatial difference in the macromolecular compositions was found in the sedimentary organic matter. Overall, while carbohydrates were the dominant (45.7%) macromolecules of the POM in the water columns, proteins were dominant (47.9%) in the sedimentary organic matter during our observation period. Decoupling of the macromolecular compositions between the water columns and underneath the sediment in Geoje-Hansan Bay appears to be a result of the various effects of selective filter feeding by oysters and protein-dominant benthic microalgae and fouling organisms.  相似文献   
3.
4.
Bhavya  P. S.  Kim  Bo Kyung  Jo  Naeun  Kim  Kwanwoo  Kang  Jae Joong  Lee  Jae Hyung  Lee  Dabin  Lee  Jang Han  Joo  HuiTae  Ahn  So Hyun  Kim  Yewon  Min  Jun-Oh  Kang  Min Gu  Yun  Mi Sun  Kang  Chang Keun  Lee  Sang Heon 《Ocean Science Journal》2019,54(1):1-14
Ocean Science Journal - Biochemical composition of phytoplankton is a key indicator of the physiological and nutritional status of phytoplankton. A balanced biochemical pattern represents a healthy...  相似文献   
5.
In the present study, nanocomposite polymeric membranes are fabricated using polyvinyl alcohol (PVA), cellulose acetate (CA) as polymers, and dimethyl sulfoxide (DMSO) as the solvent. To enhance the performance of the membrane, nanoparticles like TiO2, CaO, CdO, and ZrO are added to the polymeric solution and the doped polymeric solution is cast on a glass plate. Nine combinations of membranes are fabricated with two different concentrations (0.1% and 0.2%) of nanoparticles. The basic properties of the membranes such as density, porosity, viscosity, permeability, pure water flux, and water content are studied for the samples. Membrane pore structure and surface properties are identified and it is found that doping nanoparticles on the surface of membranes improve mechanical strength, stability, pore size, etc., allowing the membranes to perform better in extreme industrial-level effluent treatment applications. High-resolution scanning electron microscopy (SEM) shows the homogeneous dispersion of ZrO, TiO2, CaO, and CdO nanoparticles on the surface of the PVA-CA membrane. The doping of nanoparticles on the PVA-CA membrane results in improved mechanical strength and good chemical oxidation stability. In comparison, the PCD-TiO2 sample shows high thermal stability and oxidation stability at high temperatures until 200°C, which has a high potential for treating industrial effluents.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号