首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
大气科学   1篇
海洋学   3篇
  2015年   1篇
  2014年   2篇
  2011年   1篇
排序方式: 共有4条查询结果,搜索用时 93 毫秒
1
1.
This paper aims to present the critical top tension for static equilibrium configurations of a steel catenary riser(SCR) by using the finite element method. The critical top tension is the minimum top tension that can maintain the equilibrium of the SCR. If the top tension is smaller than the critical value, the equilibrium of the SCR does not exist. If the top tension is larger than the critical value, there are two possible equilibrium configurations. These two configurations exhibit the nonlinear large displacement. The configuration with the smaller displacement is stable, while the one with larger displacement is unstable. The numerical results show that the increases in the riser's vertical distances, horizontal offsets, riser's weights, internal flow velocities, and current velocities increase the critical top tensions of the SCR. In addition, the parametric studies are also performed in order to investigate the limit states for the analysis and design of the SCR.  相似文献   
2.
This paper aims to present the critical top tension for static equilibrium configurations of a steel catenary riser (SCR) by using the finite element method. The critical top tension is the minimum top tension that can maintain the equilibrium of the SCR. If the top tension is smaller than the critical value, the equilibrium of the SCR does not exist. If the top tension is larger than the critical value, there are two possible equilibrium configurations. These two configurations exhibit the nonlinear large displacement. The configuration with the smaller displacement is stable, while the one with larger displacement is unstable. The numerical results show that the increases in the riser’s vertical distances, horizontal offsets, riser’s weights, internal flow velocities, and current velocities increase the critical top tensions of the SCR. In addition, the parametric studies are also performed in order to investigate the limit states for the analysis and design of the SCR.  相似文献   
3.
This paper presents a model formulation for static and dynamic analysis of three-dimensional extensible marine riser transporting fluid. A variational model formulation is developed based on the principle of virtual work-energy and the extensible elastica theory. The virtual work-energy functional is composed of the virtual strain energy due to axial stretching, bending, and torsion and the virtual work done by the external and internal fluid. The governing dynamic equilibrium equations are derived in the Cartesian coordinate. The finite element method is used to obtain the numerical solutions. The numerical examples are provided to demonstrate interesting effects of fluid transportation and axial deformation on large displacements and dynamic properties of the three-dimensional extensible marine riser.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号