首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   2篇
  国内免费   1篇
地球物理   19篇
地质学   19篇
海洋学   1篇
综合类   2篇
自然地理   5篇
  2015年   1篇
  2014年   2篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   6篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1982年   1篇
  1967年   1篇
排序方式: 共有46条查询结果,搜索用时 15 毫秒
1.
The broad belt of intraplate volcanism in the East Atlantic between 25° and 37° N is proposed to have formed by two adjacent hotspot tracks (the Madeira and Canary tracks) that possess systematically different isotopic signatures reflecting different mantle source compositions. To test this model, Hf isotope ratios from volcanic rocks from all individual islands and all major seamounts are presented in this study. In comparison with published Nd isotope variations (6 εNd units), 176Hf/177Hf ratios span a much larger range (14 εHf units). Samples from the proposed Madeira hotspot track have the most radiogenic Hf isotopic compositions (176Hf/177Hfm up to 0.283335), extending across the entire field for central Atlantic MORB. They form a relatively narrow, elongated trend on the Nd vs. Hf isotope diagram (stretching over > 10 εHf units) between a depleted N-MORB-like endmember and a moderately enriched composition located on, or slightly below, the Nd–Hf mantle array, which overlaps the proposed “C” mantle component of Hanan and Graham (1996). In contrast, all samples from the Canary hotspot track plot below the mantle array (176Hf/177Hfm = 0.282943–0.283067) and form a much denser cluster with less compositional variation (~4 εHf units). The cluster falls between (1) a low Hf isotope HIMU-like endmember, (2) a more depleted composition, and (3) the moderately enriched end of the Madeira trend. The new Hf isotope data confirm the general geochemical distinction of the Canary and Madeira domains in the East Atlantic. Both domains, however, seem to share a common, moderately enriched endmember that has “C”-like isotope compositions and is believed to represent subducted, <1-Ga-old oceanic lithosphere (oceanic crust and possibly minor sediment addition). The lower 176Hf/177Hf ratio of the enriched, HIMU-like Canary domain endmember indicates the contribution of oceanic lithosphere with somewhat older recycling ages of ≥1 Ga.  相似文献   
2.
We present the stratigraphy, lithology, volcanology, and age of the Acahualinca section in Managua, including a famous footprint layer exposed in two museum pits. The ca. 4-m-high walls of the main northern pit (Pit I) expose excellent cross sections of Late Holocene volcaniclastic deposits in northern Managua. We have subdivided the section into six lithostratigraphic units, some of which we correlate to Late Holocene eruptions. Unit I (1.2 m thick), chiefly of hydroclastic origin, begins with the footprint layer. The bulk is dominated by mostly massive basaltic-andesitic tephra layers, interpreted to represent separate pulses of a basically phreatomagmatic eruptive episode. We correlate these deposits based on compositional and stratigraphic evidence to the Masaya Triple Layer erupted at Masaya volcano ca. 2,120 ± 120 a B.P.. The eruption occurred during the dry season. A major erosional channel unconformity up to 1 m deep in the western half of Pit I separates Units II and I. Unit II begins with basal dacitic pumice lapilli up to 10 cm thick overlain by a massive to bedded fine-grained dacitic tuff including a layer of accretionary lapilli and pockets of well-rounded pumice lapilli. Angular nonvesicular glass shards are interpreted to represent hydroclastic fragmentation. The dacitic tephra is correlated unequivocally with the ca. 1.9-ka-Plinian dacitic Chiltepe eruption. Unit III, a lithified basaltic-andesitic deposit up to 50 cm thick and extremely rich in branch molds and excellent leaf impressions, is correlated with the Masaya Tuff erupted ca. 1.8 ka ago. Unit IV, a reworked massive basaltic-andesitic deposit, rich in brown tuff clasts and well bedded and cross bedded in the northwestern corner of Pit I, cuts erosionally down as far as Unit I. A poorly defined, pale brown mass flow deposit up to 1 m thick (Unit V) is overlain by 1–1.5 m of dominantly reworked, chiefly basaltic tephra topped by soil (Unit VI). A major erosional channel carved chiefly between deposition of Units II and I may have existed as a shallow drainage channel even prior to deposition of the footprint layer. The swath of the footprints is oriented NNW, roughly parallel to, and just east of, the axis of the channel. The interpretation of the footprint layer as the initial product of a powerful eruption at Masaya volcano followed without erosional breaks by additional layers of the same eruptive phase is strong evidence that the group of 15 or 16 people tried to escape from an eruption.  相似文献   
3.
Seismic, sidescan sonar, bathymetric multibeam and ODP (Ocean Drilling Program) data obtained in the submarine channel between the volcanic islands of Gran Canaria and Tenerife allow to identify constructive features and destructive events during the evolution of both islands. The most prominent constructive features are the submarine island flanks being the acoustic basement of the seismic images. The build-up of Tenerife started following the submarine stage of Gran Canaria because the submarine island flank of Tenerife onlaps the steeper flank of Gran Canaria. The overlying sediments in the channel between Gran Canaria and Tenerife are chaotic, consisting of slumps, debris flow deposits, syn-ignimbrite turbidites, ash layers, and other volcaniclastic rocks generated by eruptions, erosion, and flank collapse of the volcanoes. Volcanic cones on the submarine island flanks reflect ongoing submarine volcanic activity. The construction of the islands is interrupted by large destructive events, especially by flank collapses resulting in giant landslides. Several Miocene flank collapses (e.g., the formation of the Horgazales basin) were identified by combining seismic and drilling data whereas young giant landslides (e.g., the Güimar debris avalanche) are documented by sidescan, bathymetric and drilling data. Sediments are also transported through numerous submarine canyons from the islands into the volcaniclastic apron. Seismic profiles across the channel do not show a major offset of reflectors. The existence of a repeatedly postulated major NE-SW-trending fault zone between Gran Canaria and Tenerife is thus in doubt. The sporadic earthquake activity in this area may be related to the regional stress field or the submarine volcanic activity in this area. Seismic reflectors cannot be correlated through the channel between the sedimentary basins north and south of Gran Canaria because the channel acts as sediment barrier. The sedimentary basins to the north and south evolved differently following the submarine growth of Gran Canaria and Tenerife in the Miocene.  相似文献   
4.
The nature and origin of the sediments and crust of the Murray Ridge System and northern Indus Fan are discussed. The uppermost unit consists of Middle Miocene to recent channel–levee complexes typical of submarine fans. This unit is underlain by a second unit composed of hemipelagic to pelagic sediments deposited during the drift phase after the break-up of India–Seychelles–Africa. A predrift sequence of assumed Mesozoic age occurring only as observed above basement ridges is composed of highly consolidated rocks. Different types of the acoustic basement were detected, which reflection seismic pattern, magnetic anomalies and gravity field modeling indicate to be of continental character. The continental crust is extremely thinned in the northern Indus Fan, lacking a typical block-faulted structure. The Indian continent–ocean transition is marked on single MCS profiles by sequences of seaward-dipping reflectors (SDR). In the northwestern Arabian Sea, the Indian plate margin is characterized by several phases of volcanism and deformation revealed from interpretation of multichannel seismic profiles and magnetic anomalies. From this study, thinned continental crust spreads between the northern Murray Ridge System and India underneath the northern Indus Fan.  相似文献   
5.
6.
7.
8.
9.
王自磐 《极地研究》2003,15(3):177-185
对南极乔治王岛菲尔德斯半岛贼鸥的食性生态进行观测与研究 ,结果表明 ,本区贼鸥的食物结构中 ,自然生态类食物百分组成 ,棕贼鸥 (C .s.lonnbergi)占 63.4% ,灰贼鸥 (C .maccormic ki)占 77.8%。同期 ,取自考察站的人类废弃物中垃圾食物的百分组成分别为 36.6%和 2 2 .3%。贼鸥食性对考察站废弃物有一定的依赖性 ,与本区环境质量下降 ,尤其考察站对废弃物的疏于管理有着直接的关系。由此表明 ,强化南极考察人员环境意识 ,建立封闭式废弃物管理系统 ,对保护南极环境有重要意义  相似文献   
10.
Detailed facies analysis of hyaloclastites and associated lavas from eight table mountains and similar "hyaloclastite volcanoes" in the Icelandic rift zone contradict a rapid and continuous, "monogenetic", entirely subglacial evolution of most volcanoes studied. The majority of the exposed hyaloclastite deposits formed in large, stable lakes as indicated by widespread, up to 300-m-thick, continuous sections of deep water, shallow water and emergent facies. Salient features include extensively layered or bedded successions comprising mainly debris flow deposits, turbidites, base surge and fallout deposits consisting of texturally and compositionally variable, slightly altered hyaloclastites, as well as sheet and pillow lavas. In contrast, chaotic assemblages of coarser-grained, more poorly sorted and more strongly palagonitized hyaloclastite tuffs and breccias, as well as scoria and lava are interpreted to have formed under sub- or englacial conditions in small, chimney-like ice cavities or ice-bound lakes. Irregularly shaped and erratically arranged hyaloclastite bodies produced at variable water levels appear to have resulted mainly from rapid changes of the eruptive environment due to repeated build-up and drainage of ice-bound lakes as well as the restricted space between the ice walls. We distinguish a "deep water" facies formed during high water levels of the lake, a hydroclastic shallow water and emergent facies (leakage of the lake or growth of the volcano above the water surface). Our model implies the temporary existence of large, stable lakes in Iceland probably formed by climatically induced ice melting. The highly complex edifices of many table mountains and similar volcanoes were constructed during several eruptive periods in changing environments characterized by contrasting volcanic and sedimentary processes. Received: 10 June 1997 / Accepted: 28 July 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号