首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地质学   2篇
海洋学   4篇
  2014年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  1995年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
From 1955 to 1985 an intensive hydrogeological survey has been carried out in Slovakia, in order to ascertain the conditions of forming mineral and geothermal waters in various geological structures and to find new sources of the afore-mentioned waters. The survey helped to clarify the laws of their distribution and evaluate the quantitative and qualitative properties of water developing on the basis of geologic-tectonic conditions and physical-geographic terms of the given territory. The Slovakian territory belongs to the Carpathian geological system. Five separate geological units having a different hydrologic characteristic, quality and water yield of reserves and resources form this geological system. A great number of mineral and thermal springs in Slovakia displaying different quantities and quality, provide numerous possibilities of their practical utilization.  相似文献   
4.
An aggregate flux event was observed by ship and by four underwater gliders during the 2008 sub-polar North Atlantic spring bloom experiment (NAB08). At the height of the diatom bloom, aggregates were observed as spikes in measurements of both particulate backscattering coefficient (bbp) and chlorophyll a fluorescence. Optical sensors on the ship and gliders were cross-calibrated through a series of simultaneous profiles, and bbp was converted to particulate organic carbon. The aggregates sank as a discrete pulse, with an average sinking rate of ∼75 m d−1; 65% of aggregate backscattering and 90% of chlorophyll fluorescence content was lost between 100 m and 900 m. Mean aggregate organic carbon flux at 100 m in mid-May was estimated at 514 mg C m−2 d−1, consistent with independent flux estimates. The use of optical spikes observed from gliders provides unprecedented coupled vertical and temporal resolution measurements of an aggregate flux event.  相似文献   
5.
Diel vertical migration (DVM) of medusae was investigated at a fixed station in the oligotrophic Southern Adriatic Sea at several depths during summer (July) 2003. We hypothesized that medusan DVM is considerably influenced by environmental variables such as hydrographic features, light intensities, and potential prey densities. We used short-term repetitive sampling as an approach to detail these relationships. Of the 26 species collected, the highest abundance was in the layer between the thermocline (15 m) and 100 m depth, where Rhopalonema velatum predominated, reaching the maximum count of 93 individuals per 10 m3. Seven species were observed over a wide depth range: Solmissus albescens (15–1200 m), R. velatum (0–800 m), Persa incolorata (50–1200 m), Octophialucium funerarium (200–1200 m), Arctapodema australis (200–1200 m), Amphinema rubra (100–800 m), and Rhabdoon singulare (15–600). According to the medusan weighted mean depth (WMD) calculations, the longest DVMs were noted for the deep-sea species S. albescens , O. funerarium , and A. australis . The shallowest species, Aglaura hemistoma , was primarily non-migratory. Certain medusan assemblages were associated consistently with a particular depth layer characterized by a particular light intensity. The interplay of environmental factors and trophic relationships explains some of the features of medusan migratory patterns. These findings thus contribute to understanding the variables that determine patterns of medusan vertical migratory behavior.  相似文献   
6.
Evaluation of a 45-year data set of primary production (PP), a 30-year data set of phytoplankton biomass, and a 51-year data set of species composition shows an increase of phytoplankton biomass and abundance in the period from the mid-1980s to the mid-1990s. Phytoplankton biomass showed bimodal seasonal cycles, with winter and spring maxima, which did not change over the past 30 years. Diatoms were the most abundant functional group and they prevailed during the colder part of the year while the dinoflagellate contribution to the phytoplankton community increased in the warmer period from May to August. Diatoms showed a significant negative correlation with sea surface temperature (SST), while dinoflagellates were positively correlated with SST. An increase of phytoplankton abundance, particularly dinoflagellate, in the period from the mid-1980s to the mid-1990s coincided with years characterized by a high North Atlantic Oscillation (NAO) index. Primary production and chlorophyll a concentration in the spring period were negatively correlated with the NAO winter (DJFM) index, probably caused by increased precipitation associated with a low or negative NAO index. PP in winter during the mixing period was positively related to the NAO winter index associated with higher temperatures and dry conditions which brought more clear days and increased input of solar radiation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号