首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地质学   1篇
海洋学   3篇
综合类   1篇
自然地理   1篇
  2013年   2篇
  2008年   1篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Mean net annual balance and the related spatio-temporal variations have been determined on the basis of well-dated artificial layers in shallow ice cores (Chernobyl, 1986, and atmospheric thermonuclear tests, mainly in 1961-62 in Novaya Zemlya). Seventy ice cores from 13 Svalbard glaciers have been analysed. On each glacier, in its accumulation area and at the highest elevation, one ice core was recovered down to about 40 m and sampled for radioactivity measurements to determine the 1986 and 1962-63 layer (1954 was the initial date of the nuclear tests). For each glacier, at least five complementary ice cores from the accumulation area were analysed to determine the Chernobyl reference layer. Six ice cores exhibit both the Chernobyl and nuclear tests layers and are of special interest in this study.
This work provides new data on the deposition rates of natural and artificial radioisotopes. Using ice cores samples from the Arctic glaciers, even with superimposed ice accumulation, it is possible to distinguish between the Chernobyl and the nuclear tests fallouts. This work also shows that the mean annual net balance did not significantly change for at least five ice core locations in the Svalbard glaciers for the two periods extending from 1963 to 1986 to the recent date of drilling.  相似文献   
2.
The Kuroko deposits of NE Honshu are a key type deposit for the study of volcanogenic massive sulfide deposits. However, these deposits have not been studied in detail since the early 1980's and knowledge of their mode of formation is now dated. In this study, we present the analysis of 12 samples of the Kuroko deposits, 12 samples of submarine hydrothermal minerals from the Sunrise deposit and 6 samples from Suiyo Seamount, both of which are located on the Izu-Ogasawara (Bonin) Arc, for 27 elements. For the Kuroko deposit, Cd>Sb>Ag>Pb>Hg>As>Zn>Cu are highly enriched, Au>Te>Bi>Ba>Mo are moderately enriched, In>Tl are somewhat enriched and Fe is not significantly enriched relative to the average continental crust. Within each of these deposits, a similar pattern of element associations is apparent: Zn–Pb with As, Sb, Cd, Ag, Hg, Tl and Au; Fe–Cu–Ba with As, Sb, Ag, Tl, Mo, Te and Au; Si–Ba with Ag and Au; CaSO4. The enrichment of the chalcophilic elements in these deposits is consistent with hydrothermal leaching of these elements from the host rocks which are dominantly rhyolite–dacite in the case of the Kuroko deposits, rhyolite in the case of the Sunrise deposit and dacite–rhyolite in the case of the Suiyo Seamount deposit. However, this pattern of element enrichment is also similar to that observed in fumarolic gas condensates from andesitic volcanoes. This suggests that there may be a significant magmatic contribution to the composition of the hydrothermal fluids responsible for the formation of the Kuroko deposits, although it is not yet possible to quantify the relative contributions of these two sources of elements.The compositional data show that Sunrise and Suiyo Seamount deposits are much closer compositionally to the Kuroko deposits from NE Honshu than are the submarine hydrothermal deposits from the JADE site in the Okinawa Trough which contain, on average, significantly higher concentrations of Pb, Zn, Sb, As and Ag than each of these deposits. In spite of the greater similarity in tectonic setting of the Hokuroku Basin in which the Kuroko deposits formed to the Okinawa Trough (intracontinental rifted back-arc basin) compared to Myojin Knoll and Suiyo Seamount (active arc volcanoes), it appears that submarine hydrothermal deposits from Myojin Knoll and Suiyo Seamount are closer analogues of the Kuroko deposit than are those from the Okinawa Trough. The present data are consistent with the magmatic hydrothermal model for the formation of Kuroko-type deposits as formulated by Urabe and Marumo [Urabe, T., Marumo, K., 1991. A new model for Kuroko-type deposits of Japan. Episodes 14, 246–251].  相似文献   
3.
Abstract

Considerable effort has been expended in studying the Izu–Bonin Arc over the past 15 years. In particular, 43 dives of the Shinkai 2000 have been undertaken there to discover and evaluate the extent of submarine hydrothermal activity and mineralization. Most effort has been focused on Myojin Knoll (23 dives), Suiyo Seamount (6 dives), and Kaikata Caldera (10 dives).

The Izu–Bonin Arc is divided in two by the Sofugan Tectonic Line. Eight submarine caldera are located north of this line but only one is south of it. The physiography of the northern sector of the arc is quite different from that of the southern sector. Volcanic rocks from the northern sector are more acidic than those from the southern sector.

Evidence for submarine hydrothermal mineralization has been observed at four seamounts along the Izu–Bonin Arc (Myojin Knoll, Myojinsho, Suiyo Seamount, and Kaikata Caldera), and submarine hydrothermal activity is evident at another three seamounts along the arc (Kurose Hole, Mokuyo Seamount, and Doyo Seamount).

The most extensive submarine hydrothermal mineral deposit so far located on the Izu–Bonin Arc is the Sunrise deposit at Myojin Knoll. This deposit, at least 400 m in diameter and 30 m high, is associated with black smoker venting, inactive sulfide chimneys, massive sulfides, hydrothermal Mn crusts, and a hydrothermal vent fauna. The maximum recorded temperature of the hydrothermal vents there was 278°C. Some of the sulfide chimneys contained as much as 49 μg/g Au and 3,400 μg/g Ag. The sunrise deposit is one of the largest submarine volcanic massive sulfide deposits so far discovered in midocean ridge, backarc, or arc settings and has an estimated mass of 9 × 106 t. This deposit may be of the Kuroko-type. The discovery of the Sunrise deposit in 1997 gives hope that other, similarly large, sulfide deposits may be found in other caldera along the Izu–Bonin Arc.

The geological variability along the arc, the high seismicity, the occurrence of active volcanism and submarine hydrothermal venting, and a proven submarine hydrothermal mineral potential coupled with the proximity of the region to Japan suggest that the Izu–Bonin Arc could profitably serve as a natural laboratory for the long-term monitoring of the seafloor.  相似文献   
4.
Pavements of manganese nodules and crusts and outcrops of Miocene limestones were observed on the flanks and flat top of the Tenpo Seamount during three Shinkai 2000 dives. The pre‐Miocene volcano supplied nuclei of volcanic rocks and hydrothermal manganese deposits, and subsequent slow or no sedimentation promoted deposition of abundant hydrogenetic nodules and crusts, mainly on the upper flank of the seamount. Nodule pavements generally cover calcareous sand surface sediments, while crusts cover hard outcrops composed probably of volcanic rocks. The fields of crusts and nodules are sparsely distributed with each other on scales of meters to tens of meters. The on‐site observation suggests the deposits have encountered tectonic and/or mass movements that resulted in unusual occurrences of densely stacked nodules and occasionally the nodules resting directly on crusts or hard substrates. Mineralogical and chemical compositions reveal that for nodules and crusts the encrusting manganese layers of around 1 cm thickness are composed of hydrogenetic vernadite, and diagenetic influence is negligible.  相似文献   
5.
1 IntroductionAntarcticicesheetisaburialgroundforatmosphericdeposition .Sincethereiscon tinuousinteractionbetweentheicesheetandtheatmosphere,variousatmosphericsub stancesareinjectedtotheicesheetsequentiallyintimeandspace.Therefore,verticalanalysesoftheicesheetprovideuswithinformationaboutpastclimaticchange (Delmas1 992 ;LegrandandMayewski 1 997)andhorizontalanalysesoftheicesheetprovideuswithknowledgeregardinglong rangetransportofairbornematerials (Kamiyamaetal.1 989;KreutzandMayewski 1 999)…  相似文献   
6.
Considerable effort has been expended in studying the Izu-Bonin Arc over the past 15 years. In particular, 43 dives of the Shinkai 2000 have been undertaken there to discover and evaluate the extent of submarine hydrothermal activity and mineraliza tion. Most effort has been focused on Myojin Knoll (23 dives), Suiyo Seamount (6 dives), and Kaikata Caldera (10 dives). The Izu-Bonin Arc is divided in two by the Sofugan Tectonic Line. Eight submarine caldera are located north of this line but only one is south of it. The physiography of the northern sector of the arc is quite different from that of the southern sector. Volcanic rocks from the northern sector are more acidic than those from the southern sector. Evidence for submarine hydrothermal mineralization has been observed at four seamounts along the Izu-Bonin Arc (Myojin Knoll, Myojinsho, Suiyo Seamount, and Kaikata Caldera), and submarine hydrothermal activity is evident at another three seamounts along the arc (Kurose Hole, Mokuyo Seamount, and Doyo Seamount). The most extensive submarine hydrothermal mineral deposit so far located on the Izu-Bonin Arc is the Sunrise deposit at Myojin Knoll. This deposit, at least 400 m in diameter and 30 m high, is associated with black smoker venting, inactive sulfide chimneys, massive sulfides, hydrothermal Mn crusts, and a hydrothermal vent fauna. The maximum recorded temperature of the hydrothermal vents there was 278°C. Some of the sulfide chimneys contained as much as 49 μg / g Au and 3,400 μg / g Ag. The sunrise deposit is one of the largest submarine volcanic massive sulfide deposits so far discovered in midocean ridge, backarc, or arc settings and has an estimated mass of 9 x 10 6 t. This deposit may be of the Kuroko-type. The discovery of the Sunrise deposit in 1997 gives hope that other, similarly large, sulfide deposits may be found in other caldera along the Izu-Bonin Arc. The geological variability along the arc, the high seismicity, the occurrence of active volcanism and submarine hydrothermal venting, and a proven submarine hydrothermal mineral potential coupled with the proximity of the region to Japan suggest that the Izu-Bonin Arc could profitably serve as a natural laboratory for the long-term monitoring of the seafloor.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号