首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
海洋学   8篇
  2007年   1篇
  2006年   2篇
  2003年   1篇
  2002年   2篇
  1999年   1篇
  1990年   1篇
排序方式: 共有8条查询结果,搜索用时 0 毫秒
1
1.
Four hurricanes impacted the reefs of Florida in 2005. In this study, we evaluate the combined impacts of hurricanes Dennis, Katrina, Rita, and Wilma on a population of Acropora palmata using a newly developed video‐mosaic methodology that provides a high‐resolution, spatially accurate landscape view of the reef benthos. Storm damage to A. palmata was surprisingly limited; only 2 out of 19 colonies were removed from the study plot at Molasses Reef. The net tissue losses for those colonies that remained were only 10% and mean diameter of colonies decreased slightly from 88.4 to 79.6 cm. In contrast, the damage to the reef framework was more severe, and a large section (6 m in diameter) was dislodged, overturned, and transported to the bottom of the reef spur. The data presented here show that two‐dimensional video‐mosaic technology is well‐suited to assess the impacts of physical disturbance on coral reefs and can be used to complement existing survey methodologies.  相似文献   
2.
Knowledge of the camera trajectory, which may be determined from the motions between consecutive frames of a video clip, can be used to register images for constructing image mosaics. We discuss a mosaic-based positioning framework for building photo-mosaics and concurrently utilizing them for improved positioning. In this approach, the mosaic is directly exploited in bounding the accumulation of position errors as we integrate the incremental motions of the camera. It is also shown that two earlier closed-form solutions for the estimation of motion directly from spatio-temporal image gradients, as for most gradient-based techniques based on the application of linear(ized) image motion constraint equations, are corrupted with systematic biases. These can be reduced significantly by incorporating the higher-order terms. We propose recursive methods to solve the new nonlinear constraint equations, and investigate the performance of the new solutions in a number of experiments with synthetic and real data  相似文献   
3.
Ship hulls, as well as bridges, port dock pilings, dams, and various underwater structures need to be inspected for periodic maintenance. Additionally, there is a critical need to provide protection against sabotage activities, and to establish effective countermeasures against illegal smuggling activities. Unmanned underwater vehicles are suitable platforms for the development of automated inspection systems, but require integration with appropriate sensor technologies. This paper describes a vision system for automated ship-hull inspection, based on computing the necessary information for positioning, navigation, and mapping of the hull from stereo images. Binocular cues are critical in resolving a number of complex visual artifacts that hamper monocular vision in shallow-water conditions. Furthermore, they simplify the estimation of vehicle pose and motion, which is fundamental for successful automatic operation. The system has been implemented on a commercial remotely operated vehicle (ROV), and tested in pool and dock tests. Results from various trials are presented to demonstrate the system capabilities  相似文献   
4.
Automatic construction of high-resolution topographical maps, or determining the shape of man-made objects, targets, and obstacles for localization, identification, and/or recognition, is an important capability in the application of autonomous or intelligent underwater vehicles. In this paper, we investigate the application of underwater image models for the reconstruction of three-dimensional object shapes from the shading cues in two-dimensional optical images. We first present the results of a sensitivity analysis in support of a simplified model for a Lambertian surface illuminated by a point source in an attenuating medium, proposed in earlier work. We then generalize a closed-form solution for planar scenes, previously proposed for negligible source-camera baseline, to the case where the baseline may be increased to minimize backscatter effects. For curved surfaces, we propose two techniques based on different iterative updating strategies to recursively improve the recovered surface shape. We study the performance of various methods using synthetic data and real images acquired under different turbidity conditions  相似文献   
5.
Maintaining a fixed position near the sea floor is a critical capability during the deployment of remotely operated or intelligent (autonomous) undersea vehicles in a variety of missions, including inspection and repair of undersea structures, data collection, and surveillance. We present an automatic optical station-keeping system for application to submersible vehicles in deep waters by exploiting the information in sea floor images. Readily measurable spatio-temporal image gradients are used to detect and compute the vehicle's translational and yaw motions using a direct motion vision technique. The vision system has been implemented on a Windows-NT Pentium platform, and the estimated positions and yaw angles are communicated via a serial link to the control system, running on a PC-386. Accurate station-keeping is demonstrated in experiments with a three-thruster floating vehicle in a 6-ft×12-ft×6-ft water tank  相似文献   
6.
Estimating the relative positions and (or) trajectory of a camera from video images is a fundamental problem in motion vision. Of special relevance is the closed-form solution for planar scenes, for processing fly-over imagery from airborne and underwater robotics platforms, automated airplane landing utilizing runway landmarks, photomosaicing, etc. However, the method's robustness can break down in certain scenarios, e.g., due to inherent translation-rotation ambiguity of visual motion with short baselines and narrow field of view. The robustness can be improved by devising methods that compute a smaller set of motion parameters, utilizing other sensors to measure the remaining components. This paper addressed key issues in six degrees of freedom positioning from fly-over imagery by integrating vision with rotational angle sensors. First, we propose and utilize robust closed-form solutions for estimating the motion and orientation of a planar surface from the image flow variations up to first order, given measurements of pitch and roll motions. We also describe a calibration technique to enable the integration of angle sensor and visual measurements. Next, an error analysis enables us to evaluate the impact of inaccurate pitch and roll measurements on the estimates from the new closed-form solutions. Finally, the performance of our new methods and the integrated positioning system are evaluated in various experiments with synthetic and real data  相似文献   
7.
Work on the development of passive-vision sensing capabilities that can increase the autonomy of an undersea vehicle is reported. Two classic machine-vision problems for recovering motion and the shape of objects from their images are considered, in light of formulations that incorporate effects due to the illumination attenuation and nonuniform lighting commonly encountered in undersea environments. Based on the formulations, methods are proposed for recovering the orientation of a planar patch from its image shading and for estimating the image motion, a useful tool in dynamic scene analysis  相似文献   
8.
We investigate the deployment of a submersible platform with stereovision imaging capability for three-dimensional (3D) mapping of benthic habitats and other sea-floor structures over local areas. A complete framework is studied, comprising: 1) suitable trajectories to be executed for data collection; 2) data processing for positioning and trajectory followed by online frame-to-frame and frame-to-mosaic registration of images, as well as recursive global realignment of positions along the path; and 3) 3D mapping by the fusion of various visual cues, including motion and stereo within a Kalman filter. The computational requirements of the system are evaluated, formalizing how processing may be achieved in real time. The proposed scenario is simulated for testing with known ground truth to assess the system performance, to quantify various errors, and to identify how performance may be improved. Experiments with underwater images are also presented to verify the performance of various components and the overall scheme.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号