首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
海洋学   5篇
  2010年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
Potential spawning habitat is defined as the area where environmental conditions are suitable for spawning to occur. Spawning adult data from the first quarter (January–March) of the International Bottom Trawl Survey have been used to study the inter-annual variability of the potential spawning habitat of North Sea plaice from 1980 to 2007. Generalised additive models (GAM) were used to create a model that related five environmental variables (depth, bottom temperature and salinity, seabed stress and sediment type) to presence–absence and abundance of spawning adults. Then, the habitat model was applied each year from 1970 to 2007 to predict inter-annual variability of the potential spawning habitat. Predicted responses obtained by GAM for each year were mapped using kriging. A hierarchical classification associated with a correspondence analysis was performed to cluster spawning suitable areas and to determine how they evolved across years. The potential spawning habitat was consistent with historical spawning ground locations described in the literature from eggs surveys. It was also found that the potential spawning habitat varied across years. Suitable areas were located in the southern part of the North Sea and along the eastern coast of England and Scotland in the eighties; they expanded further north from the nineties. Annual survey distributions did not show such northward expansion and remained located in the southern North Sea. This suggests that this species' actual spatial distribution remains stable against changing environmental conditions, and that the potential spawning habitat is not fully occupied. Changes in environmental conditions appear to remain within plaice environmental ranges, meaning that other factors may control the spatial distribution of plaice spawning habitat.  相似文献   
3.
4.
Populations of the copepod species Calanus finmarchicus often dominate the springtime biomass and secondary production of shelf ecosystems throughout the North Atlantic Ocean. Recently, it has been hypothesised that interannual to interdecadal fluctuations observed in such populations are driven primarily by climate-associated changes in ocean circulation. Here, we compare evidence from the North Sea and Gulf of Maine/Western Scotian Shelf (GoM/WSS) linking fluctuations in C. finmarchicus abundance to changes in ocean circulation associated with the North Atlantic Oscillation (NAO). A particularly striking contrast emerges from this Trans-Atlantic comparison: whereas the North Sea C. finmarchicus population exhibits a negative correlation with the NAO index, the GoM/WSS population exhibits a more complex, positive association with the index. The physical processes underlying these contrasting population responses are discussed in the context of regional- to basin-scale circulation changes associated with the NAO.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号