首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
海洋学   4篇
  2011年   1篇
  2009年   1篇
  2002年   1篇
  1998年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Unfluidized soil responses of a silty seabed to monochromatic waves   总被引:3,自引:0,他引:3  
A flume experimental study on unfluidized responses of a silty bed (d50=0.05 mm) to monochromatic water waves had shown that pore pressure variations were generally poro-elastic in the bulk body and displayed two other characteristic features not found in previous laboratory sand tests. They were an immediately fluidized thin surface layer induced by wave stresses inside the seabed's boundary layer and a porous skeleton with internally suspended sediments due to channeled flow motions. The analyses verified that on soils beneath the measurement points, both features resulted in relatively small-step pore pressure build-ups, while the former played a primary role. Besides, laboratory observations confirmed that there were some near-bed sediment suspensions during wave actions resulting in a flat bed form over a silty bed compared to small-scaled ripples over a sandy bed with no clearly identified suspended sediments. These characteristic silt responses suggest that sediment transport is critically associated with the internal soil responses and some field-observed sediment suspensions near above sandy beaches can further be approached in the laboratory by utilizing fine-grained soils.  相似文献   
2.
Regular waves were applied in a laboratory flume to investigate the evolutions of the velocity fields near above a fine sandy bed (d50=0.073 mm) during fluidized responses. Measurements of 2D velocity components and suspended sediment concentration (SSC) at 1 cm above the bed in addition to water surface displacements and sub-soil pore pressures were carried out with an acoustic Doppler velocimeter and an optical probe. The results have shown similar three typical soil responses including one unfluidized and two fluidized responses to previous report in other fine-grained soil beds. In the post- and pre-fluidized stages of a resonantly fluidized response, amplitudes of horizontal velocity component can be decreased by a maxima value of 50% while vertical components can be amplified up to 5 times larger. The developments of near-bed velocity field become less significant in consecutive non-resonantly fluidized responses. Particularly, the evolutions of the velocity field are closely dependent on the deepening of fluidized surface soil layers df and the characteristics of soil fluidization responses. The amplified vertical velocity components are clearly contradictory to the dissipated overloading waves near above a fluidized bed but are critical to much drastic sediment suspensions by interactions between overloading waves and fluidized bed soils.  相似文献   
3.
As reported in preceding paper (Part 1. Soil Fluidization), the observed phenomena of sediment suspensions above a fluidized sandy bed of Sand II (d50 = 0.092 mm) under monochromatic wave actions are quantitatively investigated. The suspended sediment concentration (SSC) at a single point within 5 cm above the bed was synchronously measured with water waves and bed soil's pore pressures with an intrusive optical sediment-concentration probe. The measurements show that SSC initiates several wave cycles after initiation of bed soil's fluidized response and grows to a peak value mainly in the post-fluidization phase. Under similar wave loadings in the same test series, SSC is usually higher over a resonantly fluidized (RF) bed than over a non-resonantly fluidized (NRF) bed. On the contrary, only relatively low SCC can be identified above an unfluidized bed. The analyses illustrate that to certain extent, peak values of SSC are directly proportional to the thickness of fluidized soil layer df. Values of df usually decrease with repeated fluidized response, longer consolidation periods, and in deeper water depths. Once the fluidized responses initiate, pore pressures are generally much significantly amplified in both shallow fluidized soil layers and near below the fluidized layer, especially during the resonance event. The resulting depth gradients of dynamic pore pressure amplitudes in shallow layers are likely to have caused higher initial rises of SSC in a RF bed than in the subsequent NRF bed. Those in deeper layer should have contributed to sustain the fluidization state for further SSC increments. Immediately after termination of wave loading, re-deposited suspended sediments always result in a typical flat bed form. For a pre-fluidized bed, wave-induced drastic sediment suspensions are still obtainable very near above the bed with even a rather thin fluidized surface soil layer.  相似文献   
4.
Simulating typhoon waves by SWAN wave model in coastal waters of Taiwan   总被引:2,自引:0,他引:2  
The SWAN wave model is typically designed for wave simulations in the near-shore region and thus is selected for evaluating its applicability on typhoon waves in the coastal waters around Taiwan Island. Numerical calculations on processes of wave heights and periods during the passages of four representative typhoons are compared with measured data from field wave stations on both east and west coasts. The results have shown that waves due to typhoons of paths 2, 3 and 4 can be reasonably simulated on east coastal waters. However, discrepancies increase for the simulated results on west coastal waters because the island's central mountains partly damage the cyclonic structures of the passing-over typhoons. It is also found that the included nested grid scheme in SWAN could improve the accuracy of simulations in coastal waters to facilitate further engineering practices.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号