首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   17篇
  国内免费   2篇
测绘学   4篇
大气科学   27篇
地球物理   65篇
地质学   87篇
海洋学   24篇
天文学   11篇
综合类   1篇
自然地理   21篇
  2022年   2篇
  2021年   6篇
  2020年   5篇
  2019年   10篇
  2018年   12篇
  2017年   7篇
  2016年   14篇
  2015年   9篇
  2014年   8篇
  2013年   32篇
  2012年   18篇
  2011年   23篇
  2010年   12篇
  2009年   16篇
  2008年   10篇
  2007年   6篇
  2006年   12篇
  2005年   9篇
  2004年   2篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
排序方式: 共有240条查询结果,搜索用时 15 毫秒
1.
Wildfire increases the potential connectivity of runoff and sediment throughout watersheds due to greater bare soil, runoff and erosion as compared to pre-fire conditions. This research examines the connectivity of post-fire runoff and sediment from hillslopes (< 1.5 ha; n = 31) and catchments (< 1000 ha; n = 10) within two watersheds (< 1500 ha) burned by the 2012 High Park Fire in northcentral Colorado, USA. Our objectives were to: (1) identify sources and quantify magnitudes of post-fire runoff and erosion at nested hillslopes and watersheds for two rain storms with varied duration, intensity and antecedent precipitation; and (2) assess the factors affecting the magnitude and connectivity of runoff and sediment across spatial scales for these two rain storms. The two summer storms that are the focus of this research occurred during the third summer after burning. The first storm had low intensity rainfall over 11 hours (return interval <1–2 years), whereas the second event had high intensity rainfall over 1 hour (return interval <1–10 years). The lower intensity storm was preceded by high antecedent rainfall and led to low hillslope sediment yields and channel incision at most locations, whereas the high intensity storm led to infiltration-excess overland flow, high sediment yields, in-stream sediment deposition and channel substrate fining. For both storms, hillslope-to-stream sediment delivery ratios and area-normalised cross-sectional channel change increased with the percent of catchment that burned at high severity. For the high intensity storm, hillslope-to-stream sediment delivery ratios decreased with unconfined channel length (%). The findings quantify post-fire connectivity and sediment delivery from hillslopes and streams, and highlight how different types of storms can cause varying magnitues and spatial patterns of sediment transport and deposition from hillslopes through stream channel networks.  相似文献   
2.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   
3.
The H. J. Andrews Experimental Forest (HJA) encompasses the 6400 ha Lookout Creek watershed in western Oregon, USA. Hydrologic, chemistry and precipitation data have been collected, curated, and archived for up to 70 years. The HJA was established in 1948 to study the effects of harvest of old-growth conifer forest and logging-road construction on water quality, quantity and vegetation succession. Over time, research questions have expanded to include terrestrial and aquatic species, communities and ecosystem dynamics. There are nine small experimental watersheds and 10 gaging stations in the HJA, including both reference and experimentally treated watersheds. Gaged watershed areas range from 8.5 to 6242 ha. All gaging stations record stage height, water conductivity, water temperature and above-stream air temperature. At nine of the gage sites, flow-proportional water samples are collected and composited over 3-week intervals for chemical analysis. Analysis of stream and precipitation chemistry began in 1968. Analytes include dissolved and particulate species of nitrogen and phosphorus, dissolved organic carbon, pH, specific conductance, suspended sediment, alkalinity, and major cations and anions. Supporting climate measurements began in the 1950s in association with the first small watershed experiments. Over time, and following the initiation of the Long Term Ecological Research (LTER) grant in 1980, infrastructure expanded to include a set of benchmark and secondary meteorological stations located in clearings spanning the elevation range within the Lookout Creek watershed, as well as a large number of forest understory temperature stations. Extensive metadata on sensor configurations, changes in methods over time, sensor accuracy and precision, and data quality control flags are associated with the HJA data.  相似文献   
4.
Prominent in many historical accounts of European first contact with Australian nature are stories of encounters between European curiosity and curious Australian biota, such as the platypus and the eucalyptus. In this paper, I argue that post-settlement relations with the Goulburn River, one of the largest rivers in south-east Australia, likewise attest to the centrality of curiosity in early European engagements with Australian landscape. In mapping several relational ontologies of the Goulburn River, I attend to the socio-material practices in which this river has been performed as different and as normal. My interest is in a specific form of difference, that of antipodean difference: the river as topsy-turvy, backwards, unusual, or inverted in relation to some presumed norm, whether that norm be rooted in memories and experiences of European rivers or imaginings of an original state of nature. This is a story of how an extraordinary river became ordinary, and of how we might understand antipodean difference as curious in deed (i.e. as performed), rather than as curious indeed (i.e. as an innate quality of Australian nature).  相似文献   
5.
How rock resistance or erodibility affects fluvial landforms and processes is an outstanding question in geomorphology that has recently garnered attention owing to the recognition that the erosion rates of bedrock channels largely set the pace of landscape evolution. In this work, we evaluate valley width, terrace distribution, and bedload provenance in terms of reach scale variation in lithology in the study reach and discuss the implications for landscape evolution in a catchment with relatively flat‐lying stratigraphy and very little uplift. A reach of the Buffalo National River in Arkansas was partitioned into lithologic reaches and the mechanical and chemical resistance of the main lithologies making up the catchment was measured. Valley width and the spatial distribution of terraces were compared among the different lithologic reaches. The surface grain size and provenance of coarse (2–90 mm) sediment of both modern gravel bars and older terrace deposits that make up the former bedload were measured and defined. The results demonstrate a strong impact of lithology upon valley width, terrace distribution, and bedload provenance and therefore, upon landscape evolution processes. Channel down‐cutting through different lithologies creates variable patterns of resistance across catchments and continents. Particularly in post‐tectonic and non‐tectonic landscapes, the variation in resistance that arises from the exhumation of different rocks in channel longitudinal profiles can impact local base levels, initiating responses that can be propagated through channel networks. The rate at which that response is transmitted through channels is potentially amplified and/or mitigated by differences between the resistance of channel beds and bedload sediment loads. In the study reach, variation in lithologic resistance influences the prevalence of lateral and vertical processes, thus producing a spatial pattern of terraces that reflects rock type rather than climate, regional base level change, or hydrologic variability. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
6.
The current study focuses on understanding key factors controlling geochemical export in eight diverse coastal watersheds at seasonal and annual time scales. Geochemical, atmospheric and hydrologic data across a range of hydro‐climatic regimes and varying land uses were investigated and relationships analysed. A hyperbolic dilution model was fitted for each watershed system to evaluate discharge–concentration relationships. Nitrate concentration effects were observed in watersheds exposed to high atmospheric deposition rates as well as agricultural watersheds, whereas urban watersheds showed nitrate dilution effects. Dilution patterns were observed for calcium, magnesium and sulfate for almost all watersheds. Seasonal loads for almost all constituents were noted to be mainly driven by hydrologic seasonality, but are also dependent on inputs (atmospheric deposition and land use sources). Understanding the primary controls on hydro‐chemical interactions is critical for developing and refining predictive water quality models, especially in coastal watersheds where sensitive downstream ecosystems act as receiving waters for upstream pollutant loads. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
7.
The sea floor of Fram Strait, the over 2500 m deep passage between the Arctic Ocean and the Norwegian-Greenland Sea, is part of a complex transform zone between the Knipovich mid-oceanic ridge of the Norwegian-Greenland Sea and the Nansen-Gakkel Ridge of the Arctic Ocean. Because linear magnetic anomalies formed by sea-floor spreading have not been found, the precise location of the boundary between the Eurasian and the North American plate is unknown in this region. Systematic surveying of Fram Strait with SEABEAM and high resolution seismic profiling began in 1984 and continued in 1985 and 1987, providing detailed morphology of the Fram Strait sea floor and permitting better definition of its morphotectonics. The 1984 survey presented in this paper provided a complete set of bathymetric data from the southernmost section of the Svalbard Transform, including the Molloy Fracture Zone, connecting the Knipovich Ridge to the Molloy Ridge; and the Molloy Deep, a nodal basin formed at the intersection of the Molloy Transform Fault and the Molloy Ridge. This nodal basin has a revised maximum depth of 5607 m water depth at 79°8.5N and 2°47E.  相似文献   
8.
Nuclear activity on land and dumping of waste in the Siberian shelf seas mean that the Kara Sea is most likely to experience inputs of radioactivity. Industrial and other anthropogenic activities in the expansive Ob' and Yenisey watersheds also contribute organochlorines, heavy metals and oil to this region. Contaminant fate is influenced by the distribution of the river discharge and processes associated with ice formation and ocean currents. Although average conditions are important in the transport of pollutants, events such as storms and iceberg gouging may be critical in deciding the ultimate fate of dumped and released contaminants.  相似文献   
9.
Effective marine archaeological site management demands detailed information on not only the spatial distribution of artefacts but also the degradation state of the materials present. Although sonar methods have frequently been used in an attempt to detect buried wooden shipwrecks they are currently unable to indicate their degradation state. To assess the sensitivity of acoustic measurements to changes in the degradation state of such material, and hence the potential for sonars to quantify degradation, laboratory measurements of compressional wave velocity, as well as bulk density for oak and pine samples, in varying states of decay, were undertaken. These data enabled the calculation of theoretical reflection coefficients for such materials buried in various marine sediments. As wood degrades, the reflection coefficients become more negative, resulting in the hypothesis that the more degraded wood becomes, the easier it should be to detect. Typical reflection coefficients of the order of −0.43 and −0.52 for the most degraded oak and pine samples in sand are predicted. Conversely, for wood exposed to seawater the predicted reflection coefficients are large and positive for undegraded material (0.35 for oak, 0.18 for pine) and decrease to zero or slightly below for the most degraded samples. This indicates that exposed timbers, when heavily degraded, can be acoustically transparent and so undetectable by acoustic methods. Corroboration of these experimental results was provided through comparison with high resolution seismic reflection data that has been acquired over two shipwrecks.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号