首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314篇
  免费   12篇
  国内免费   2篇
测绘学   14篇
大气科学   28篇
地球物理   74篇
地质学   111篇
海洋学   28篇
天文学   40篇
综合类   2篇
自然地理   31篇
  2021年   2篇
  2020年   8篇
  2019年   3篇
  2018年   10篇
  2017年   13篇
  2016年   11篇
  2015年   6篇
  2014年   15篇
  2013年   24篇
  2012年   17篇
  2011年   13篇
  2010年   9篇
  2009年   13篇
  2008年   15篇
  2007年   18篇
  2006年   12篇
  2005年   12篇
  2004年   12篇
  2003年   5篇
  2002年   6篇
  2001年   6篇
  2000年   4篇
  1999年   7篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   6篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   6篇
  1982年   7篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1978年   6篇
  1977年   3篇
  1976年   6篇
  1975年   4篇
  1974年   2篇
  1973年   4篇
  1971年   1篇
  1943年   1篇
排序方式: 共有328条查询结果,搜索用时 15 毫秒
1.
In deep-sea environments, plant remains of several origins are found, including branches, twigs, leaves, and wood pieces, among others. As most of the deep-sea bottoms are oligotrophic and nutrient-limited, plant remains provide an oasis of localized organic enrichment and a substrate for colonization. Sunken wood was suggested to play an important evolutionary role in the diversification of chemosynthetic ecosystems, possibly representing stepping stones for the colonization between vent and seep ecosystems. In order to understand colonization processes of the Pacific Costa Rican meio-epifaunal assemblages associated with sunken wood, a field experiment was conducted on Mound 12 (8°55.778′N, 84°18.730′W) at ~1,000 m water depth. Woodblocks were placed in four different habitats (Mussel beds, tube worms, near mussel beds, rubble bottoms), and different local environmental conditions (seepage-active and seepage-inactive sites). Seven experimental Douglas fir woodblocks (each 1,047 cm2 in surface area) were deployed from the R/V Atlantis using the manned submersible Alvin in February 2009 and recovered after 10.5 months in January 2010. Sample processing and analyses led to a data set of abundance (total 9,951 individuals) and spatial distribution of nine meio-epifaunal higher taxa/groups. Meio-epifaunal densities on individual woodblocks ranged from 3 to 26 ind.10 cm2. Copepods accounted for the highest abundances (75.1%), followed by nauplii larvae (11.7%) and nematodes (9.8%). The maximum number of individuals (26.3 ind.10 cm−2) was found in blocks placed in seepage-inactive areas (near active mussel beds) in contrast to 2.9 ind.10 cm−2 in active areas (within a mussel bed). A hierarchical cluster analysis grouped blocks according to seepage activity and not to habitat, but tests of similarity showed no significant differences in higher taxon composition and abundances, probably owing either to substrate homogeneity or low sample size. Copepods were the most abundant representatives, suggesting that this group is one of the most successful in colonizing in the early stage of succession, in this case while hardwood substrates are not yet decomposed or bored by bivalves.  相似文献   
2.
This paper discusses the analysis and modelling of the hydrological system of the basin of the Kara River, a transboundary river in Togo and Benin, as a necessary step towards sustainable water resources management. The methodological approach integrates the use of discharge parameters, flow duration curves and the lumped conceptual model IHACRES. A Sobol sensitivity analysis is performed and the model is calibrated by applying the shuffled complex evolution algorithm. Results show that discharge generation in three nested catchments of the basin is affected by landscape physical characteristics. The IHACRES model adequately simulates the rainfall–runoff dynamics in the basin with a mean modified Nash-Sutcliffe efficiency measure of 0.6. Modelling results indicate that parameters controlling rainfall transformation to effective rainfall are more sensitive than those routing the streamflow. This study provides insights into understanding the catchment’s hydrological system. Nevertheless, further investigations are required to better understand detailed runoff generation processes.
EDITOR M.C. Acreman; ASSOCIATE EDITOR N Verhoest  相似文献   
3.
Understanding groundwater–surface water (GW–SW) interactions is vital for water management in karstic catchments due to its impact on water quality. The objective of this study was to evaluate and compare the applicability of seven environmental tracers to quantify and localize groundwater exfiltration into a small, human-impacted karstic river system. Tracers were selected based on their emission source to the surface water either as (a) dissolved, predominantly geogenic compounds (radon-222, sulphate and electrical conductivity) or (b) anthropogenic compounds (predominantly) originating from wastewater treatment plant (WWTP) effluents (carbamazepine, tramadol, sodium, chloride). Two contrasting sampling approaches were compared (a) assuming steady-state flow conditions and (b) considering the travel time of the water parcels (Lagrangian sampling) through the catchment to account for diurnal changes in inflow from the WWTP. Spatial variability of the concentrations of all tracers indicated sections of preferential groundwater inflow. Lagrangian sampling techniques seem highly relevant for capturing dynamic concentration patterns of WWTP-derived compounds. Quantification of GW inflow with the finite element model FINIFLUX, based on observed in-stream Rn activities led to plausible fluxes along the investigated river reaches (0.265 m3 s−1), while observations of other natural or anthropogenic environmental tracers produced less plausible water fluxes. Important point sources of groundwater exfiltration can be ascribed to locations where the river crosses geological fault lines. This indicates that commonly applied concepts describing groundwater–surface water interactions assuming diffuse flow in porous media are difficult to transfer to karstic river systems whereas concepts from fractured aquifers may be more applicable. In general, this study helps selecting the best suited hydrological tracer for GW exfiltration and leads to a better understanding of processes controlling groundwater inflow into karstic river systems.  相似文献   
4.
Nautilus subplicatusSteinmann, 1895 is a latest Cretaceous species of nautiloid which is common in southern South America (Chile, Argentina) and the Antarctic Peninsula and which is best assigned to the genus EutrephocerasHyatt, 1894. Nautilus dorbignyanusForbes in Darwin, 1846 and Nautilus valenciennii Hupé in Gay, 1854 are here considered to be senior synonyms which later authors have apparently overlooked. The type material of these two taxa is reillustrated. On the basis of this and additional material it is demonstrated that only a single nautiloid species occurs in the Quiriquina Formation of late Maastrichtian age. For this we propose to use N. dorbignyanus as the oldest available name.  相似文献   
5.
6.
The projected climate change signals of a five-member high resolution ensemble, based on two global climate models (GCMs: ECHAM5 and CCCma3) and two regional climate models (RCMs: CLM and WRF) are analysed in this paper (Part II of a two part paper). In Part I the performance of the models for the control period are presented. The RCMs use a two nest procedure over Europe and Germany with a final spatial resolution of 7 km to downscale the GCM simulations for the present (1971–2000) and future A1B scenario (2021–2050) time periods. The ensemble was extended by earlier simulations with the RCM REMO (driven by ECHAM5, two realisations) at a slightly coarser resolution. The climate change signals are evaluated and tested for significance for mean values and the seasonal cycles of temperature and precipitation, as well as for the intensity distribution of precipitation and the numbers of dry days and dry periods. All GCMs project a significant warming over Europe on seasonal and annual scales and the projected warming of the GCMs is retained in both nests of the RCMs, however, with added small variations. The mean warming over Germany of all ensemble members for the fine nest is in the range of 0.8 and 1.3 K with an average of 1.1 K. For mean annual precipitation the climate change signal varies in the range of ?2 to 9 % over Germany within the ensemble. Changes in the number of wet days are projected in the range of ±4 % on the annual scale for the future time period. For the probability distribution of precipitation intensity, a decrease of lower intensities and an increase of moderate and higher intensities is projected by most ensemble members. For the mean values, the results indicate that the projected temperature change signal is caused mainly by the GCM and its initial condition (realisation), with little impact from the RCM. For precipitation, in addition, the RCM affects the climate change signal significantly.  相似文献   
7.
Exchange of groundwater and lake water with typically quite different chemical composition is an important driver for biogeochemical processes at the groundwater‐lake interface, which can affect the water quality of lakes. This is of particular relevance in mine lakes where anoxic and slightly acidic groundwater mixes with oxic and acidic lake water (pH < 3). To identify links between groundwater‐lake exchange rates and acid neutralization processes in the sediments, exchange rates were quantified and related to pore‐water pH, sulfate and iron concentrations as well as sulfate reduction rates within the sediment. Seepage rates measured with seepage meters (?2.5 to 5.8 L m‐2 d‐1) were in reasonable agreement with rates inverted from modeled chloride profiles (?1.8 to 8.1 L m‐2 d‐1). Large‐scale exchange patterns were defined by the (hydro)geologic setting but superimposed by smaller scale variations caused by variability in sediment texture. Sites characterized by groundwater upwelling (flow into the lake) and sites where flow alternated between upwelling and downwelling were identified. Observed chloride profiles at the alternating sites reflected the transient flow regime. Seepage direction, as well as seepage rate, were found to influence pH, sulfate and iron profiles and the associated sulfate reduction rates. Under alternating conditions proton‐consuming processes, for example, sulfate reduction, were slowed. In the uppermost layer of the sediment (max. 5 cm), sulfate reduction rates were significantly higher at upwelling (>330 nmol g‐1 d‐1) compared to alternating sites (<220 nmol g‐1 d‐1). Although differences in sulfate reduction rates could not be explained solely by different flux rates, they were clearly related to the prevailing groundwater‐lake exchange patterns and the associated pH conditions. Our findings strongly suggest that groundwater‐lake exchange has significant effects on the biogeochemical processes that are coupled to sulfate reduction such as acidity retention and precipitation of iron sulfides. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
8.
The parrotfish Sparisoma viride often grazes live coral from edges undermined by the Caribbean encrusting and excavating sponge Cliona tenuis. To test whether parrotfish biting action has an effect on the dynamics of the sponge–coral interaction, we manipulated access of parrotfishes to the sponge–coral border in two species of massive corals. When parrotfish had access to the border, C. tenuis advanced significantly more slowly into the coral Siderastrea siderea than into the coral Diploria strigosa. When fish bites were prevented, sponge spread into S. siderea was further slowed down but remained the same for D. strigosa. Additionally, a thinner layer of the outer coral skeleton was removed by bioerosion when fish were excluded, a condition more pronounced in D. strigosa than in S. siderea. Thus, the speed of sponge‐spread and the extent of bioerosion by parrotfish was coral species‐dependent. It is hypothesized that coral skeleton architecture is the main variable associated with such dependency. Cliona tenuis spread is slow when undermining live S. siderea owing to the coral’s compact skeleton. The coral’s smooth and hard surface promotes a wide and shallow parrotfish bite morphology, which allows the sponge to overgrow the denuded area and thus advance slightly faster. On the less compact skeleton of the brain coral, D. strigosa, sponge spread is more rapid. This coral’s rather uneven surface sustains narrower and deeper parrotfish bites which do not facilitate the already fast sponge progress. Parrotfish corallivory thus acts synergistically with C. tenuis to further harm corals whose skeletal architecture slows sponge lateral spread. In addition, C. tenuis also appears to mediate the predator–prey fish–coral interaction by attracting parrotfish biting.  相似文献   
9.
In March 2011, the Ecophysiology and Genetics Working Groups of the European Science Foundation COST Action ES 0906, entitled Seagrass Productivity: From Genes to Ecosystem Management, organized an exploratory workshop entitled “Linking Ecophysiology and Ecogenomics in Seagrass Systems”. The goal of the workshop was to discuss how to integrate comparative gene expression studies with physiological processes such as photosynthetic performance, carbon and nitrogen utilization and environmental adaptation. The main questions discussed for integrative research related to mechanisms of carbon utilization, light requirements, temperature effects and natural variation in pH and ocean acidification. It was concluded that the seagrass research community is still in the nascent stages of linking ecophysiology with genomic responses, as carbon and nitrogen metabolism of seagrasses have not been sufficiently well studied. Likewise, genomic approaches have only been able to assign meaningful interpretations to a handful of differentially expressed genes. Nevertheless, the way forward has been established.  相似文献   
10.
In this article, we describe the dynamics of pH, O2 and H2S in the top 5–10 cm of an intertidal flat consisting of permeable sand. These dynamics were measured at the low water line and higher up the flat and during several seasons. Together with pore water nutrient data, the dynamics confirm that two types of transport act as driving forces for the cycling of elements (Billerbeck et al. 2006b): Fast surface dynamics of pore water chemistry occur only during inundation. Thus, they must be driven by hydraulics (tidal and wave action) and are highly dependent on weather conditions. This was demonstrated clearly by quick variation in oxygen penetration depth: Seeps are active at low tide only, indicating that the pore water flow in them is driven by a pressure head developing at low tide. The seeps are fed by slow transport of pore water over long distances in the deeper sediment. In the seeps, high concentrations of degradation products such as nutrients and sulphide were found, showing them to be the outlets of deep-seated degradation processes. The degradation products appear toxic for bioturbating/bioirrigating organisms, as a consequence of which, these were absent in the wider seep areas. These two mechanisms driving advection determine oxygen dynamics in these flats, whereas bioirrigation plays a minor role. The deep circulation causes a characteristic distribution of strongly reduced pore water near the low water line and rather more oxidised sediments in the centre of the flats. The two combined transport phenomena determine the fluxes of solutes and gases from the sediment to the surface water and in this way create specific niches for various types of microorganisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号