首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   1篇
大气科学   1篇
地球物理   1篇
海洋学   2篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2012年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
卡里马塔海峡水体交换的季节变化   总被引:2,自引:0,他引:2  
Four trawl-resistant bottom mounts, with acoustic Doppler current profilers(ADCPs) embedded, were deployed in the Karimata Strait from November 2008 to June 2015 as part of the South China Sea-Indonesian Seas Transport/Exchange and Impact on Seasonal Fish Migration(SITE) Program, to estimate the volume and property transport between the South China Sea and Indonesian seas via the strait. The observed current data reveal that the volume transport through the Karimata Strait exhibits significant seasonal variation. The winteraveraged(from December to February) transport is –1.99 Sv(1 Sv=1×10~6 m~3/s), while in the boreal summer(from June to August), the average transport is 0.69 Sv. Moreover, the average transport from January 2009 to December2014 is –0.74 Sv(the positive/negative value indicates northward/southward transport). May and September are the transition period. In May, the currents in the Karimata Strait turn northward, consistent with the local monsoon. In September, the southeasterly trade wind is still present over the strait, driving surface water northward, whereas the bottom flow reverses direction, possibly because of the pressure gradient across the strait from north to south.  相似文献   
2.
Using velocity profiles observed by bottom-mounted ADCPs, we identified strong intraseasonal variability in the Sunda Strait throughflow. This intraseasonal variability, with typical periods of 20–40 days and the strongest energy occurring in the boreal spring, can reverse the Sunda Strait throughflow. Further analysis showed this intraseasonal variability to be closely related to local zonal wind and the sea level gradient along the strait. These observations confirm for the first time the existence of Kelvin-wave-like signals in the Sunda Strait, propagating from the equatorial Indian Ocean. This study also provides new insights into the effects of Kelvin waves on the Sunda Strait throughflow.  相似文献   
3.
An ENE-WSW-trending localized basalt-diabase outcrop along the SE margin of Luk Ulo Mélange Complex has been suggested as intrusive rocks cut through the Paleogene Totogan and Karangsambung formations. However, the absolute dating of the volcanics is older than the inferred relative age of the sedimentary formations, hence the in-situ intrusion theory is less likely. A subsurface imaging should delineate the possibility of the in-situ nature of volcanic rock by looking at the continuation of the rocks to the depth. In this study, we did a subsurface imaging by electrical resistivity method. The electrical resistivity surveys were conducted at 3 (three) lines across the ENE-WSW trend of the volcanic distribution. From those three measurements, we obtained three inversion models that present the distribution of the resistivity. We could differentiate between the high resistivity of volcanic rocks and the low resistivity of the clay-dominated sediments. Instead of the deep-rooted intrusions, the geometry of the volcanic rocks is concordant with the sedimentary strata. Since we do not observe any spatial continuity of the bodies, both laterally and vertically, the volcanic rocks might be part of broken intrusive rocks. Furthermore, the size and the sporadically distributed of the rocks also indicated that they are more likely as fragments during the olistostrome deposition, transported from its original location.  相似文献   
4.
The MAGICC (Model for the Assessment of Greenhouse gas Induced Climate Change) model simulation has been carried out for the 2000–2100 period to investigate the impacts of future Indian greenhouse gas emission scenarios on the atmospheric concentrations of carbon dioxide, methane and nitrous oxide besides other parameters like radiative forcing and temperature. For this purpose, the default global GHG (Greenhouse Gases) inventory was modified by incorporation of Indian GHG emission inventories which have been developed using three different approaches namely (a) Business-As-Usual (BAU) approach, (b) Best Case Scenario (BCS) approach and (c) Economy approach (involving the country’s GDP). The model outputs obtained using these modified GHG inventories are compared with various default model scenarios such as A1B, A2, B1, B2 scenarios of AIM (Asia-Pacific Integrated Model) and P50 scenario (median of 35 scenarios given in MAGICC). The differences in the range of output values for the default case scenarios (i.e., using the GHG inventories built into the model) vis-à-vis modified approach which incorporated India-specific emission inventories for AIM and P50 are quite appreciable for most of the modeled parameters. A reduction of 7% and 9% in global carbon dioxide (CO2) emissions has been observed respectively for the years 2050 and 2100. Global methane (CH4) and global nitrous oxide (N2O) emissions indicate a reduction of 13% and 15% respectively for 2100. Correspondingly, global concentrations of CO2, CH4 and N2O are estimated to reduce by about 4%, 4% and 1% respectively. Radiative forcing of CO2, CH4 and N2O indicate reductions of 6%, 14% and 4% respectively for the year 2100. Global annual mean temperature change (incorporating aerosol effects) gets reduced by 4% in 2100. Global annual mean temperature change reduces by 5% in 2100 when aerosol effects have been excluded. In addition to the above, the Indian contributions in global CO2, CH4 and N2O emissions have also been assessed by India Excluded (IE) scenario. Indian contribution in global CO2 emissions was observed in the range of 10%–26%, 6%–36% and 10%–38% respectively for BCS, Economy and BAU approaches, for the years 2020, 2050 and 2100 for P50, A1B-AIM, A2-AIM, B1-AIM & B2-AIM scenarios. CH4 and N2O emissions indicate about 4%–10% and 2%–3% contributions respectively in the global CH4 and N2O emissions for the years 2020, 2050 and 2100. These Indian GHG emissions have significant influence on global GHG concentrations and consequently on climate parameters like RF and ∆T. The study reflects not only the importance of Indian emissions in the global context but also underlines the need of incorporation of country specific GHG emissions in modeling to reduce uncertainties in simulation of climate change parameters.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号