首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
  国内免费   1篇
大气科学   3篇
地球物理   2篇
海洋学   1篇
天文学   40篇
  2017年   2篇
  2016年   1篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   3篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1983年   7篇
  1982年   1篇
排序方式: 共有46条查询结果,搜索用时 19 毫秒
1.
We study the association of solar flares with coronal mass ejections (CMEs) during the deep, extended solar minimum of 2007?–?2009, using extreme-ultraviolet (EUV) and white-light (coronagraph) images from the Solar Terrestrial Relations Observatory (STEREO). Although all of the fast (v>900 km?s?1), wide (θ>100°) CMEs are associated with a flare that is at least identified in GOES soft X-ray light curves, a majority of flares with relatively high X-ray intensity for the deep solar minimum (e.g. ?1×10?6 W?m?2 or C1) are not associated with CMEs. Intense flares tend to occur in active regions with a strong and complex photospheric magnetic field, but the active regions that produce CME-associated flares tend to be small, including those that have no sunspots and therefore no NOAA active-region numbers. Other factors on scales similar to and larger than active regions seem to exist that contribute to the association of flares with CMEs. We find the possible low coronal signatures of CMEs, namely eruptions, dimmings, EUV waves, and Type III bursts, in 91 %, 74 %, 57 %, and 74 %, respectively, of the 35 flares that we associate with CMEs. None of these observables can fully replace direct observations of CMEs by coronagraphs.  相似文献   
2.
The aim of this work is to demonstrate the properties of the magnetospheric model around Kerr black holes (BHs), the so-called fly-wheel (rotation driven) model. The fly-wheel engine of the BH–accretion disc system is applied to the statistics of QSOs/AGNs. In the model, the central BH is assumed to be formed at z ∼102 and obtains nearly maximum but finite rotation energy (∼extreme Kerr BH) at the formation stage. The inherently obtained rotation energy of the Kerr BH is released through a magnetohydrodynamic process. This model naturally leads to a finite lifetime of AGN activity.
Nitta, Takahashi & Tomimatsu clarified the individual evolution of the Kerr BH fly-wheel engine, which is parametrized by BH mass, initial Kerr parameter, magnetic field near the horizon and a dimensionless small parameter. We impose a statistical model for the initial mass function (IMF) of an ensemble of BHs using the Press–Schechter formalism. With the help of additional assumptions, we can discuss the evolution of the luminosity function and the spatial number density of QSOs/AGNs.
By comparing with observations , it is found that a somewhat flat IMF and weak dependence of the magnetic field on the BH mass are preferred. The result explains well the decrease of very bright QSOs and decrease of population after z ∼2.  相似文献   
3.
We present 132 h of new time-series photometric observations of the δ Scuti star CD−24 7599 acquired during 86 nights from 1993 to 1996 to study its frequency and amplitude variations. By using all published observations we demonstrate that the three dominating pulsation modes of the star can change their photometric amplitudes within one month at certain times, while the amplitudes can remain constant within the measurement errors at other times. CD−24 7599 also exhibits frequency variations, which do not show any correspondence between the different modes.   The typical time-scale for the amplitude variations is found to be several hundred days, which is of the same order of magnitude as the inverse linear growth rates of a selected model. We find no evidence for periodic amplitude modulation of two of the investigated modes ( f 2 and f 3), but f 1 may exhibit periodic modulation. The latter result could be spurious and requires confirmation. The observed frequency variations may either be continuous or reflect sudden frequency jumps. No evidence for cyclical period changes is obtained.   We exclude precession of the pulsation axis and oblique pulsation for the amplitude variations. Beating of closely spaced frequencies cannot explain the amplitude modulations of two of the modes, while it is possible for the third. Evolutionary effects, binarity, magnetic field changes or avoided crossings cannot be made responsible for the observed period changes. Only resonance between different modes may be able to explain the observations. However, at this stage a quantitative comparison is not possible. More observations, especially data leading to a definite mode identification and further measurements of the temporal behaviour of the amplitudes and frequencies of CD−24 7599, are required.  相似文献   
4.
We survey here the observational results on five gradual and four impulsive type events from the hard X-ray imaging (SXT) and spectrometer (HXM) instruments on the Hinotori satellite. A set of differences are clearly recognized between the gradual and impulsive type bursts. These are: (1) Hard X-ray images show the existence of a large coronal source for each gradual burst and a wide variety of source structures for impulsive bursts. (2) The source heights of the impulsive bursts appear to be low. (3) All gradual bursts show power-law spectra while impulsive bursts show exponential thermal spectra at least before the maximum phase. (4) Energy-dependent peak delays are observed only in gradual bursts. From these differences we suggest that two different acceleration and emission mechanisms are involved with these two kinds of hard X-ray bursts.  相似文献   
5.
Time variations of the hard X-ray spectrum in solar flares are observed by the hard X-ray spectrometer (HXM) aboard the Hinotori satellite. With a new presentation of the dynamic spectrum we have studied the differences between impulsive and gradual hard X-ray bursts. In the impulsive events a “bent” spectrum up to some hundred keV persists at least until the main peak. In the gradual events, on the other hand, a power-law spectrum augmented by a low-energy excess is dominant.  相似文献   
6.
We present multi-instrument observations of active region (AR) 8048, made between 3 June and 5 June 1997, as part of the SOHO Joint Observing Program 33. This AR has a sigmoid-like global shape and undergoes transient brightenings in both soft X-rays and transition region (TR) lines. We compute a magneto-hydrostatic model of the AR magnetic field, using as boundary condition the photospheric observations of SOHO/MDI. The computed large-scale magnetic field lines show that the large-scale sigmoid is formed by two sets of coronal loops. Shorter loops, associated with the core of the SXT emission, coincide with the loops observed in the hotter CDS lines. These loops reveal a gradient of temperature, from 2 MK at the top to 1 MK at the ends. The field lines most closely matching these hot loops extend along the quasi-separatrix layers (QSLs) of the computed coronal field. The TR brightenings observed with SOHO/CDS can also be associated with the magnetic field topology, both QSL intersections with the photosphere, and places where separatrices issuing from bald patches (sites where field lines coming from the corona are tangent to the photosphere) intersect the photosphere. There are, furthermore, suggestions that the element abundances measured in the TR may depend on the type of topological structure present. Typically, the TR brightenings associated with QSLs have coronal abundances, while those associated with BP separatrices have abundances closer to photospheric values. We suggest that this difference is due to the location and manner in which magnetic reconnection occurs in two different topological structures. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1013302317042  相似文献   
7.
We re-examine observations bearing on the origin of metric type II bursts for six impulsive solar events in November 1997. Previous analyses of these events indicated that the metric type IIs were due to flares (either blast waves or ejecta). Our point of departure was the study of Zhang et al. (2001) based on the Large Angle and Spectrometric Coronagraphs C1 instrument (occulting disk at 1.1 R0) that identified the rapid acceleration phase of coronal mass ejections (CMEs) with the rise phase of soft X-ray light curves of associated flares. We find that the inferred onset of rapid CME acceleration in each of the six cases occurred 1–3 min before the onset of metric type II emission, in contrast to the results of previous studies for certain of these events that obtained CME launch times 25–45 min earlier than type II onset. The removal of the CME-metric type II timing discrepancy in these events and, more generally, the identification of the onset of the rapid acceleration phase of CMEs with the flare impulsive phase undercuts a significant argument against CMEs as metric type II shock drivers. In general, the six events exhibited: (1) ample evidence of dynamic behavior [soft X-ray ejecta, extreme ultra-violet imaging telescope (EIT) dimming onsets, and wave initiation (observed variously in H, EUV, and soft X-rays)] during the inferred fast acceleration phases of the CMEs, consistent with the cataclysmic disruption of the low solar atmosphere one would expect to be associated with a CME; and (2) an organic relationship between EIT dimmings (generally taken to be source regions of CMEs) and EIT waves (which are highly associated with metric type II bursts) indicative of a CME-driver scenario. Our analysis indicates that the broad (90 to halo) CMEs observed in the outer LASCO coronagraphs for these impulsive events began life as relatively small-scale structures, with angular spans of 15 in the low corona. A review of on-going work bearing on other aspects (than timing) of the question of the origin of metric type II bursts (CME association; connectivity of metric and decametric-hectometric type II shocks; spatial relationship between CMEs and metric shocks) leads to the conclusion that CMEs remain a strong candidate to be the principal/sole driver of metric type II shocks vis-à-vis flare blast waves/ejecta.  相似文献   
8.
McAllister  A. H.  Kurokawa  H.  Shibata  K.  Nitta  N. 《Solar physics》1996,169(1):123-149
An H filament eruption on November 5, 1992 was fully observed in H with the Hida Flare Monitoring Telescope, while Yohkoh's Soft X-ray Telescope observed the pre- and post-eruption evolution of the coronal magnetic fields. From the H data, including the red and blue wings, we have reconstructed the rise of the filament, including trajectory, velocity, and acceleration. In combination with the Yohkoh data this reconstruction suggests that the filament had several interactions with other coronal magnetic fields during the eruption. The Yohkoh data also shows pre-eruption changes in the coronal fields and several post-eruption bright coronal structures. The pre-eruption changes are interpreted as a partial opening of the corona, indicating that it is not necessary to have a complete opening of the corona in order for a filament to erupt and we discuss the several possible contributions from emerging flux. The post-event bright coronal structures are compared with theory and with a cleaner filament eruption event on July 31, 1992. These comparisons suggest that, although there are many similarities, it is hard to completely reconcile the observations with the existing theory.  相似文献   
9.
The Very Large Array and the Soft X-ray Telescope (SXT) aboard the Yohkoh satellite jointly observed the rapid growth and decay of a so-called anemone active region on 3–6 April, 1992 (AR 7124). The VLA obtained maps of the AR 7124 at 1.5, 4.7, and 8.4 GHz. In general, discrete coronal loop systems are rarely resolved at 1.5 GHz wavelengths because of limited brightness contrast due to optical depth effects and wave scattering. Due to its unusual anemone-like morphology, however, several discrete loops or loop systems are resolved by both the VLA at 1.5 GHz and the SXT in AR 7124.Using extrapolations of the photospheric field and the radio observations at 4.7 and 8.4 GHz, we find that the microwave emission is the result of gyroresonance emission from a hot, rarefied plasma, at the second and/or third harmonic. The decimetric source is complex -1.5 GHz emission from the leading part of AR 7124 is due to free-free emission, while that in the trailing part of the active region is dominated by gyroresonance emission. We also examine an interesting case of a discrete radio loop with no soft X-ray (SXR) emission adjacent to a hot SXR loop. This observation clearly shows the multithermal nature of the solar corona.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号