首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
天文学   5篇
  2019年   1篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2004年   1篇
排序方式: 共有5条查询结果,搜索用时 12 毫秒
1
1.

It has been shown that the model of a scattering medium composed of clusters located in the far zones of each other allows some properties of regolith-like surfaces to be quantitatively estimated from the phase dependences of intensity and polarization measured in the backscattering domain. From the polarization profiles, the sizes of particles, the structure and porosity of the medium, and a portion of the surface area covered with a disperse material can be determined. At the same time, the intensity profiles of the scattered light weakly depend on the sizes and structure of particles; they are mainly controlled by the concentration of scatterers in the medium and the shadow-hiding contribution at small phase angles. Since the latter effect is beyond the considered model, a good agreement between the model and the measured intensity cannot be achieved. Nevertheless, if a portion of the surface that participates in coherent backscattering has been found from the phase profile of polarization, the present model makes it possible to determine the relative contribution of the shadow-hiding effect to the brightness surge measured at zero phase angle. This, in turn, may allow the roughness of the scattering surface to be estimated. The model contains no free parameters, but there is currently no possibility to verify it comprehensively by the data obtained in laboratory measurements of the samples with thoroughly controlled characteristics, because such measurements are rare for a wide range of the properties of particles in a medium, their packing density, and phase angles.

  相似文献   
2.
Over the last decade, considerable progress has been achieved in the theory of light scattering by morphologically complex objects, which extends the potential of correct interpretation of photometric and polarimetric observations. This especially concerns the backscattering domain, where the opposition effects in brightness and polarization are observed. Although the equations of radiative transfer and weak localization (coherent backscattering) are rigorously valid only for sparse media, the results of exact computer solutions of the Maxwell equations for a macroscopic volume filled with randomly positioned particles show that their application area can be wider. In particular, the observations can be correctly interpreted if the packing density of particles in the medium reaches 20–30%. The recently suggested approximate solution of the coherent backscattering problem allowed interesting effects in the spectra of Saturn’s satellites to be explained. In the densely packed media, the effects that are impossible in the sparse media and caused by the near-field contribution can be observed. To calculate the characteristics of radiation reflected by such a medium, it is not sufficient to solve the radiative transfer and weak localization equations, even if they are written in a form without the far-zone limitations. Nowadays, the influence of the interaction of particles in the near field can be analyzed only for the restricted ensembles of particles. It shows that the substantial increase of the packing density essentially changes the phase functions of intensity and polarization in the backscattering domain. This allows the packing density of particles in the medium and their absorbing properties to be estimated from the shape of the phase curves measured. However, the task of quantitative interpretation of the measurements of radiation reflected by a densely packed medium, in terms of sizes of particles, their refractive index, and packing density, still remains unsolved.  相似文献   
3.
The explanation of the opposition effects observed in brightness and polarization in different celestial bodies and laboratory samples is still far from being complete. The shadow hiding and coherent backscattering mechanisms are mentioned most frequently in this connection. In the present work, we consider one more scattering mechanism—the interaction of particles in the near field—and its influence on the brightness and polarization of light scattered by ensembles of particles at small phase angles. First, we analyze two manifestations of this mechanism: the field inhomogeneity in the vicinity of the scatterers and the shielding of particles by each other at distances compared with their sizes. Then, we use the model regolith described as an ensemble of clusters as constituents and compare the contributions of the coherent backscattering and the near-field effect to the intensity and polarization of light when the porosity of the ensemble is varied. The modeling confirms that the phase dependences of the intensity and polarization of light scattered by complex structures in the backscattering domain is mainly caused by these two mechanisms. The coherent backscattering works more effectively in sparse media, while the near-field effect manifests itself in more compact ensembles of wavelength-sized particles. However, it is difficult to distinguish quantitatively their contributions, even in models of simple structures. A number of observations, especially of moderate- and low-albedo objects, can be explained only by invoking the near-field effect.  相似文献   
4.
Although the opposition phenomena observed in brightness and polarization for various astronomical objects and laboratory samples have been under intense study for many years, their explanation is still far from being complete. The shadow hiding and coherent backscattering effects are mentioned most frequently in this connection. In the present work we first discuss how other coherent scattering mechanisms, in particular interference and interaction between scatterers in the near field, influence brightness and polarization of complex ensembles of particles at small phase angles. Then we demonstrate the contribution of the different mechanisms to the scattering process in a model regolith described as an ensemble of wavelength-sized clusters as constituents. While the clusters are always densely packed, the porosity of the ensemble itself, i.e., the average distances between the clusters within the ensemble, is allowed to vary. The modeling confirms that the phase dependence of intensity and polarization of light scattered by complex structures in the backscattering domain is mainly caused by the interplay of (1) the constructive interference of waves traveling through the particle ensemble along similar paths but in opposite directions and (2) the near-field effect caused by the inhomogeneity of waves in the immediate vicinity of constituent particles. The first mechanism works more effectively in sparse ensembles, while the second one manifests itself in more compact structures of wavelength-sized scatterers at distances comparable to the wavelength. It is difficult to distinguish quantitatively their contributions in models of simple structures and even more in measurements. A number of observations, especially of moderate and low albedo objects, can, however, be explained only by invoking the near-field effect.  相似文献   
5.
The present study considers the dependence of characteristics of light scattering by aggregate particles on the refractive index, size, and number of spherical particles composing the aggregate, as well as on the structure and porosity of the cluster. The parameters were varied in sufficiently wide ranges to let a coherent picture of the polarimetric properties of relatively small aggregate particles emerge (the size parameter of the aggregate is less than 10). It was shown that, in the framework of the aggregate model, the behavior of polarization phase curves observed for both comets and regolith surfaces can be explained. The modeling carried out confirms that the sizes of the cometary dust particles are larger than the wavelength. However, the grains forming the cometary dust particles or the regolith (or details of the particle surface) have a size less than 0.3–0.5 m. This agrees with estimates obtained by other methods. The determining role in the formation of the polarization phase curve is played by the structure of the external layer of the clusters. The appearance of the negative branch of polarization and its shape substantially depend on the effectiveness of the interference of multiply scattered waves and on the interaction in the near field at these phase angles. Interference and interaction in the near field in turn are determined by the sizes of elementary scatterers and the structure of the ensemble. If the number of constituent particles in the aggregate is larger than several tens, its role in the formation of the negative branch of polarization is minor, while the influence on the polarization maximum position is rather substantial. The polarimetric data alone cannot provide a unique estimate of the refractive index: the brightness measurements must be invoked as well. For a more complete quantitative interpretation of the observations, the scattering matrix of aggregates comparable in size to or larger than the wavelength must be calculated in the short- and long-wavelength ranges, which still encounters serious theoretical and technical difficulties. Moreover, in order to obtain unique results, it is obvious that the spectral range of observations must be extended and that other types of measurements, such as spectroscopic ones, must also be used.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号