首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
自然地理   4篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
青藏高原为全球气候变化最为敏感的区域之一,探讨该地区土壤水分变化对近地面气温的影响将为青藏高原水汽循环研究及该地区对周边气候与环境的影响研究提供重要理论支撑。利用NCEP-CFSR数据集,基于土壤水分对近地面气温的影响机理,揭示了青藏高原不同季节、不同植被分区下土壤水分时空分异规律、土壤水分与蒸发率的响应与耦合状态及土壤水分通过蒸散发过程对近地面气温的影响。结果表明:① 不同季节下青藏高原土壤水分空间分布基本一致,除西北地区和喜马拉雅山脉外,整体呈现由东南向西北递减趋势,青藏高原地区存在干旱区变湿,湿润区变干的空间特征;② 青藏高原大部分区域土壤水分处于干湿过渡状态,其中青藏高原南部和东南部地区全年处于干湿过渡状态,而柴达木盆地几乎全年处于干旱状态;③ 近地面气温对土壤水分的响应在冬季最弱,在夏季最强且空间差异较小,其中在冬、春、夏季为负反馈,另外不同植被覆盖区近地面气温对土壤水分的敏感性差异很大。此项研究对于进一步探讨青藏高原地区陆气耦合状态及变化环境下的区域水汽循环及其效应具有重要理论意义。  相似文献   
2.
珠三角城市化对气温时空差异性影响   总被引:1,自引:1,他引:1  
利用1967-2015年珠江三角洲21个气象站逐日气温资料,根据人口数量、人口密度和夜间灯光数据等数据集划分城市和郊区站点类型,在此基础上,对比不同时空尺度城市站和郊区站气温变化,分析了城市化对气温影响的时空差异性。结果表明:① 1967-2015年,珠三角地区年平均气温、平均最高气温和最低气温均显著升高,平均最低气温的增温速率最高,分别是平均气温的1.05~1.16倍和平均最高气温的0.95~1.32倍。其中,年平均气温变化速率的季节差异普遍表现为秋冬季节增温最强,增温速率均高于0.3 ℃/10a,春夏季节增温较弱,增温速率最低为0.16 ℃/10a。② 利用城市和海表温度对比研究城市化效应,受城市化影响,珠三角年平均气温的增温趋势是0.096 ℃/10a。③ 利用城市和郊区对比研究城市化效应,1967-2015年城市化对城区的气温升高具有显著贡献,而且城市化对平均最高气温及最低气温增温的贡献率最大。其中,城市化对年平均气温变化的贡献率的季节差异表现为夏冬季节较强,贡献率高于11.8%,春秋季节较弱,贡献率最低仅为4.46%。④ 站点划分方法,城市化发展不同阶段及研究时间尺度的选择均导致城市化增温效应的研究结果具有较大不确定性。不同站点分类方法多指示城市化对最低气温升高的贡献率最强,最高可达到38.6%。  相似文献   
3.
申泽西  张强  吴文欢  宋长青 《地理学报》2022,77(5):1211-1224
青藏高原及横断山区位中国西南部,地貌类型复杂,地质灾害频发,严重威胁到西南地区人民生命财产安全,尤其影响进藏交通线的通达度。系统研究该区地质灾害易发区空间格局及驱动因子,可为青藏高原及横断山区地质灾害风险防范及地质灾害的防灾减灾救灾提供重要理论支撑。研究结果表明,基于随机森林构建的判识模型对于灾害点的判识精度均高于80%,甚至达到91%,可准确模拟与预测研究区各分区的地质灾害点。研究区地质灾害易发点主要分布在横断山区南部与东北部以及青藏高原中南部地区,且以小型及中型规模地质灾害为主(占比为87%)。综合分区Ⅰ~Ⅲ的地质灾害易发区面积分别为17.5万km2、17.4万km2与27.5万km2。各综合分区地质灾害驱动因子研究表明,横断山区南部区域(综合分区Ⅰ内)小型及中型地质灾害的主要驱动力为道路建设导致的沿途坡面稳定性变化(贡献率为20.2%);横断山区东北部区域及青藏高原地区(综合分区Ⅱ~Ⅲ)小型及中型地质灾害的主要驱动力为植被覆盖状况的变化对于坡面稳定性的影响(贡献率分别为23.6%与27.3%)。此外,综合分区Ⅱ~Ⅲ内影响小型及中型地质灾害空间格局的第二个驱动因子为道路建设导致的沿途坡面稳定性的变化(贡献率为15.7%)与河流对于周边坡面的侵蚀作用(贡献率为17%)。  相似文献   
4.
青藏高原地表土壤水变化、影响因子及未来预估   总被引:2,自引:0,他引:2  
土壤水分是地表和大气连接的纽带,在水文循环中扮演着重要角色。青藏高原作为“第三极”和“亚洲水塔”,其土壤水分对周边地区的气候如亚洲季风的形成和维持产生重要影响,也深刻影响着亚洲水资源的可利用量。基于分布在青藏高原3个气候区的100个站点的实测土壤水数据,对ECV、ERA、MERRA、Noah数据集进行评价,选择对土壤水分评估效果最好的数据集,分析各种气象要素对土壤水分时空格局的影响,并预估未来100年内青藏高原土壤水变化,探讨可能气候成因。结果表明:① Noah数据集对青藏高原历史时期土壤水分评估效果最好,相对其他地区,各数据集对那曲地区土壤水分评估效果最优;② 在各种气象因子中,降水是影响大部分地区土壤水分时空变化的最主要因子,但在喜马拉雅山脉地带,尤其山脉北坡,温度和太阳辐射有较高的影响;③ 1948-1970年土壤水分有明显的下降趋势,1970-1990年土壤水分呈波动变化,无明显趋势,1990-2005年土壤水分有一定的上升趋势,2005年后至今土壤水分有明显快速下降趋势:④ 不同未来情景,土壤水分有下降趋势,其中在CRP 8.5情景下,土壤水分下降最为明显,在2080年之后有更加显著的下降趋势;⑤ 未来降水和温度均呈上升趋势,其中干旱指数变化在RCP 8.5情景下呈下降趋势,在RCP 2.6和RCP 4.5情景下无明显变化,干旱指数在一定程度上能解释未来土壤水分的变化格局。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号