首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   950篇
  免费   43篇
  国内免费   9篇
测绘学   32篇
大气科学   59篇
地球物理   237篇
地质学   284篇
海洋学   147篇
天文学   181篇
综合类   5篇
自然地理   57篇
  2023年   5篇
  2021年   10篇
  2020年   22篇
  2019年   9篇
  2018年   23篇
  2017年   21篇
  2016年   23篇
  2015年   17篇
  2014年   28篇
  2013年   61篇
  2012年   26篇
  2011年   44篇
  2010年   36篇
  2009年   50篇
  2008年   32篇
  2007年   39篇
  2006年   42篇
  2005年   19篇
  2004年   36篇
  2003年   31篇
  2002年   23篇
  2001年   16篇
  2000年   19篇
  1999年   13篇
  1998年   21篇
  1997年   13篇
  1996年   9篇
  1995年   11篇
  1994年   12篇
  1993年   10篇
  1992年   17篇
  1991年   10篇
  1989年   6篇
  1988年   5篇
  1987年   13篇
  1986年   8篇
  1985年   21篇
  1984年   32篇
  1983年   16篇
  1982年   15篇
  1981年   22篇
  1980年   13篇
  1979年   10篇
  1978年   13篇
  1977年   10篇
  1976年   13篇
  1975年   11篇
  1974年   7篇
  1973年   11篇
  1971年   5篇
排序方式: 共有1002条查询结果,搜索用时 62 毫秒
1.
Dehydration melting of muscovite in metasedimentary sequences is the initially dominant mechanism of granitic melt generation in orogenic hinterlands. In dry (vapour-absent) crust, muscovite reacts with quartz to produce K-feldspar, sillimanite, and monzogranitic melt. When water vapour is present in excess, sillimanite and melt are the primary products of muscovite breakdown, and any K-feldspar produced is due to melt crystallization. Here we document the reaction mechanisms that control nucleation and growth of K-feldspar, sillimanite, and silicate melt in the metamorphic core of the Himalaya, and outline the microstructural criteria used to distinguish peritectic K-feldspar from K-feldspar grains formed during melt crystallization. We have characterized four stages of microstructural evolution in selected psammitic and pelitic samples from the Langtang and Everest regions: (a) K-feldspar nucleates epitaxially on plagioclase while intergrowths of fibrolitic sillimanite and the remaining hydrous melt components replace muscovite. (b) In quartzofeldspathic domains, K-feldspar replaces plagioclase by K+–Na+ cation exchange, while melt and intergrowths of sillimanite+quartz form in the aluminous domains. (c) At 7–8 vol.% melt generation, the system evolves from a closed to open system and all phases coarsen by up to two orders of magnitude, resulting in large K-feldspar porphyroblasts. (d) Preferential crystallization of residual melt on K-feldspar porphyroblasts and coarsened quartz forms an augen gneiss texture with a monzogranitic-tonalitic matrix that contains intergrowths of sillimanite+tourmaline+muscovite+apatite. Initial poikiloblasts of peritectic K-feldspar trap fine-grained inclusions of quartz and biotite by replacement growth of matrix plagioclase. During subsequent coarsening, peritectic K-feldspar grains overgrow and trap fabric-aligned biotite, resulting in a core to rim coarsening of inclusion size. These microstructural criteria enable a mass balance of peritectic K-feldspar and sillimanite to constrain the amount of free H2O present during muscovite dehydration. The resulting modal proportion of K-feldspar in the Himalayan metamorphic core requires vapour-absent conditions during muscovite dehydration melting and leucogranite formation, indicating that the generation of large volumes of granitic melts in orogenic belts is not necessarily contingent on an external source of fluids.  相似文献   
2.
Enhanced production of unconventional hydrocarbons in the United States has driven interest in natural gas development globally, but simultaneously raised concerns regarding water quantity and quality impacts associated with hydrocarbon extraction. We conducted a pre‐development assessment of groundwater geochemistry in the critically water‐restricted Karoo Basin, South Africa. Twenty‐two springs and groundwater samples were analyzed for major dissolved ions, trace elements, water stable isotopes, strontium and boron isotopes, hydrocarbons and helium composition. The data revealed three end‐members: a deep, saline groundwater with a sodium‐chloride composition, an old, deep freshwater with a sodium‐bicarbonate‐chloride composition and a shallow, calcium‐bicarbonate freshwater. In a few cases, we identified direct mixing of the deep saline water and shallow groundwater. Stable water isotopes indicate that the shallow groundwater was controlled by evaporation in arid conditions, while the saline waters were diluted by apparently fossil meteoric water originated under wetter climatic conditions. These geochemical and isotopic data, in combination with elevated helium levels, suggest that exogenous fluids are the source of the saline groundwater and originated from remnant seawater prior to dilution by old meteoric water combined with further modification by water‐rock interactions. Samples with elevated methane concentrations (>14 ccSTP/kg) were strongly associated with the sodium‐chloride water located near dolerite intrusions, which likely provide a preferential pathway for vertical migration of deeply sourced hydrocarbon‐rich saline waters to the surface. This pre‐drill evaluation indicates that the natural migration of methane‐ and salt‐rich waters provides a source of geogenic contamination to shallow aquifers prior to shale gas development in the Karoo Basin.  相似文献   
3.
4.
Evaluations of tidal wetland restoration efforts suffer from a lack of appropriate reference sites and standardized methods among projects. To help address these issues, the National Estuarine Research Reserve System (NERRS) and the NOAA Restoration Center engaged in a partnership to monitor ecological responses and evaluate 17 tidal wetland restoration projects associated with five reserves. The goals of this study were to (1) determine the level of restoration achieved at each project using the restoration performance index (RPI), which compares change in parameters over time between reference and restoration sites, (2) compare hydrologic and excavation restoration projects using the RPI, (3) identify key indicator parameters for assessing restoration effectiveness, and (4) evaluate the value of the NERRS as reference sites for local restoration projects. We found that the RPI, modified for this study, was an effective tool for evaluating relative differences in restoration performance; most projects achieved an intermediate level of restoration from 2008 to 2010, and two sites became very similar to their paired reference sites, indicating that the restoration efforts were highly effective. There were no differences in RPI scores between hydrologic and excavation restoration project types. Two abiotic parameters (marsh platform elevation and groundwater level) were significantly correlated with vegetation community structure and thus can potentially influence restoration performance. Our results highlight the value of the NERRS as reference sites for assessing tidal wetland restoration projects and provide improved guidance for scientists and restoration practitioners by highlighting the RPI as a trajectory analysis tool and identifying key monitoring parameters.  相似文献   
5.
Tidal creeks in large coastal deltas can be important habitat for fish but are often highly modified by human activities. Connectivity between tributary creeks and mainstem channels is often constrained by structures such as dikes and floodgates, designed to protect urban and agricultural areas from flooding. While they play important roles in flood mitigation, floodgates can diminish habitat quality and block fish from accessing tidal creeks. It is likely that floodgates differ in their operations and may consequently open for different amounts of time; however, floodgate operations and their effects are not well quantified. We asked the question: how does the mechanical functioning of these floodgates affect fish communities in tidal creeks? We used time-lapse cameras and quantified the timing of gate openings for 22 tributaries of the Lower Fraser River in British Columbia, Canada, and related these operational data to differences in fish communities above and below floodgates. Floodgate operations varied substantially, with some floodgates opening daily while others opened less than 20% of the day, on average. Sites with floodgates that seldom opened were associated with greater differences in fish communities and with reduced upstream native species richness by about one species on average. Where floodgates opened infrequently, we also found lower upstream dissolved oxygen concentrations than at sites where floodgates opened for longer periods of time. Thus, floodgate operations can influence fish communities as well as water quality. These data indicate a large scope for improving floodgate operations for connectivity.  相似文献   
6.
Landslide deposits dam Lake Oeschinen (Oeschinensee), located above Kandersteg, Switzerland. However, past confusion differentiating deposits of multiple landslide events has confounded efforts to quantify the volume, age, and failure dynamics of the Oeschinensee rock avalanche. Here we combine field and remote mapping, topographic reconstruction, cosmogenic surface exposure dating, and numerical runout modeling to quantify salient parameters of the event. Differences in boulder lithology and deposit morphology reveal that the landslide body damming Oeschinensee consists of debris from both an older rock avalanche, possibly Kandertal, as well as the Oeschinensee rock avalanche. We distinguish a source volume for the Oeschinensee event of 37 Mm3, resulting in an estimated deposit volume of 46 Mm3, smaller than previous estimates that included portions of the Kandertal mass. Runout modeling revealed peak and average rock avalanche velocities of 65 and 45 m/s, respectively, and support a single-event failure scenario. 36Cl surface exposure dating of deposited boulders indicates a mean age for the rock avalanche of 2.3 ± 0.2 kyr. This age coincides with the timing of a paleo-seismic event identified from lacustrine sediments in Swiss lakes, suggesting an earthquake trigger. Our results help clarify the hazard and geomorphic effects of rare, large rock avalanches in alpine settings.  相似文献   
7.
This Commentary reflects on the state of the scholarship on learning for environmental and natural resource policy and governance. How have we been learning about learning? We highlight theoretical and empirical advancements related to learning, as well as areas of divergence between learning theories and frameworks, and underdeveloped knowledge around processes and outcomes. To address these limitations and improve progress in both theory and practice, we offer recommendations for learning scholarship by focusing on how to collectively engage in ‘learning about learning’.  相似文献   
8.
Wildfires represent one of the largest disturbances in watersheds of the Intermountain West. Yet, we lack models capable of predicting post-wildfire impacts on downstream ecosystems and infrastructure. Here we present a novel modeling framework that links new and existing models to simulate the post-wildfire sediment cascade, including spatially explicit predictions of debris flows, storage of debris flow sediment within valleys, delivery of debris flow sediment to active channels, and the downstream routing of sediment through river networks. We apply the model to sediment dynamics in Clear Creek watershed following the 2010 Twitchell Canyon Fire in the Tushar Mountains of southern Utah. The debris flow generation model performed well, correctly predicting 19 out of 20 debris flows from the largest catchments, with only four false positives and two false negatives at observed rainfall intensities. In total, the model predicts the occurrence of 160 post-wildfire debris flows across the Clear Creek watershed, generating more than 650 000 m3 of sediment. Our new storage and delivery model predicts the vast majority of this sediment is stored within valleys, and only 13% is delivered to the river network. The sediment routing model identifies numerous sediment bottlenecks within the network, which alter transport dynamics and may be hotspots for aggradation and aquatic habitat alteration. The volume of sediment exported from the watershed after seven years of simulation totals 17% of that delivered, or 2% of the total generated debris flow sediment. In the case of the Twitchell Canyon Fire, this highlights that significant post-wildfire sediment volumes can be stored in valleys (87%) and within the stream network (11%). Finally, we discuss useful insights that can be gleaned from the model framework, as well as the limitations and need for more monitoring and theory development in order to better constrain essential inputs, process rates, and morphodynamics. © 2019 John Wiley & Sons, Ltd.  相似文献   
9.
The south‐west region of the Goulburn–Broken catchment in the south‐eastern Murray–Darling Basin in Australia faces a range of natural resource challenges. A balanced strategy is required to achieve the contrasting objectives of remediation of land salinization and reducing salt export, while maintaining water supply security to satisfy human consumption and support ecosystems. This study linked the Catchment Analysis Tool (CAT), comprising a suite of farming system models, to the catchment‐scale CATNode hydrological model to investigate the effects of land use change and climate variation on catchment streamflow and salt export. The modelling explored and contrasted the impacts of a series of different revegetation and climate scenarios. The results indicated that targeted revegetation to only satisfy biodiversity outcomes within a catchment is unlikely to have much greater impact on streamflow and salt load in comparison with simple random plantings. Additionally, the results also indicated that revegetation to achieve salt export reduction can effectively reduce salt export while having a disproportionately smaller affect on streamflows. Furthermore, streamflow declines can be minimized by targeting revegetation activities without significantly altering salt export. The study also found that climate change scenarios will have an equal if not more significant impact on these issues over the next 70 years. Uncertainty in CATNode streamflow predictions was investigated because of the effect of parameter uncertainty. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
10.
We compared median runoff (R) and precipitation (P) relationships over 25 years from 20 mesoscale (50 to 5,000 km2) catchments on the Boreal Plains, Alberta, Canada, to understand controls on water sink and source dynamics in water‐limited, low‐relief northern environments. Long‐term catchment R and runoff efficiency (RP?1) were low and varied spatially by over an order of magnitude (3 to 119 mm/year, 1 to 27%). Intercatchment differences were not associated with small variations in climate. The partitioning of P into evapotranspiration (ET) and R instead reflected the interplay between underlying glacial deposit texture, overlying soil‐vegetation land cover, and regional slope. Correlation and principal component analyses results show that peatland‐swamp wetlands were the major source areas of water. The lowest estimates of median annual catchment ET (321 to 395 mm) and greatest R (60 to 119 mm, 13 to 27% of P) were observed in low‐relief, peatland‐swamp dominated catchments, within both fine‐textured clay‐plain and coarse‐textured glacial deposits. In contrast, open‐water wetlands and deciduous‐mixedwood forest land covers acted as water sinks, and less catchment R was observed with increases in proportional coverage of these land covers. In catchments dominated by hummocky moraines, long‐term runoff was restricted to 10 mm/year, or 2% of P. This reflects the poor surface‐drainage networks and slightly greater regional slope of the fine‐textured glacial deposit, coupled with the large soil‐water and depression storage and higher actual ET of associated shallow open‐water marsh wetland and deciduous‐forest land covers. This intercatchment study enhances current conceptual frameworks for predicting water yield in the Boreal Plains based on the sink and source functions of glacial landforms and soil‐vegetation land covers. It offers the capability within this hydro‐geoclimatic region to design reclaimed catchments with desired hydrological functionality and associated tolerances to climate or land‐use changes and inform land management decisions based on effective catchment‐scale conceptual understanding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号