首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
地质学   15篇
自然地理   2篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   2篇
  2008年   1篇
  1999年   5篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1987年   1篇
  1974年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Krüger, L. C., Paus, A., Svendsen, J. I. & Bjune, A. E. 2011: Lateglacial vegetation and palaeoenvironment in W Norway, with new pollen data from the Sunnmøre region. Boreas, 10.1111/j.1502‐3885.2011.00213.x. ISSN 0300‐9483. Two sediment sequences from Sunnmøre, northern W Norway, were pollen‐analytically studied to reconstruct the Lateglacial vegetation history and climate. The coastal Dimnamyra was deglaciated around 15.3 ka BP, whereas Løkjingsmyra, further inland, became ice‐free around 14 ka BP. The pioneer vegetation dominated by snow‐bed communities was gradually replaced by grassland and sparse heath vegetation. A pronounced peak in Poaceae around 12.9 ka BP may reflect warmer and/or drier conditions. The Younger Dryas (YD) cooling phase shows increasing snow‐bed vegetation and the local establishment of Artemisia norvegica. A subsequent vegetation closure from grassland to heath signals the Holocene warming. Birch forests were established 500–600 years after the YD–Holocene transition. This development follows the pattern of the Sunnmøre region, which is clearly different from the Empetrum dominance in the Lateglacial interstadial further south in W Norway. The Lateglacial oscillations GI‐1d (Older Dryas) and GI‐1b (Gerzensee) are hardly traceable in the north, in contrast to southern W Norway. The southern vegetation was probably closer to an ecotone and more susceptible to climate changes.  相似文献   
2.
A 22 m long sediment core from Lake Yamozero on the Timan Ridge in northern Russia has provided evidence of intriguing climatic shifts during the last glacial cycle. An overall shallowing of the lake is reflected in the lower part of the cores, where pollen indicates a transition from glacial steppe vegetation to interstadial shrub-tundra. These beds are capped by a well-defined layer of compact clay deposited in relatively deep water, where pollen shows surrounding spruce forests and warmer-than-present summer temperatures. The most conservative interpretation is that this unit represents the last interglacial period. However, a series of Optical Stimulated Luminescence (OSL) dates suggests that it corresponds with the Early Weichselian Odderade interstadial (MIS 5a). This would imply that the Odderade interstadial was just as warm as a normal interglacial in this continental part of northern Europe. If correct, then pollen analysis, as a correlation tool, is less straightforward and the definition of an interglacial is more complex than previously thought. We discuss the validity and possible systematic errors of the OSL dates on which this age model is based, but conclude they really indicate a MIS 5a age for the warm period. Above the clay is an unconformity, most likely reflecting a period of subaerial exposure implying dry conditions. Deposition of silt under fluctuating cold climates in the Middle Weichselian continued until a second gap in the record at c . 40 kyr BP. The lake basin started to fill up again around 18 kyr BP.  相似文献   
3.
Late Weichselian glaciation history of the northern North Sea   总被引:8,自引:1,他引:8  
Based on new data from the Fladen, Sleipner and Troll areas, combined with earlier published results, a glaciation curve for the Late Weichselian in the northern North Sea is constructed. The youngest date on marine sedimentation prior to the late Weichselian maximum ice extent is 29.4 ka BP. At this time the North Sea and probably large parts of southern Norway were deglaciated (corresponding to the Alesund interstadial in western Norway). In a period between 29.4 and c. 22 ka BP, the northern North Sea experienced its maximum Weichselian glaciation with a coalescing British and Scandinavian ice sheet. The first recorded marine inundation is found in the Fladen area where marine sedimentation started close to 22 ka BP. After this the ice fronts receded both to the east and west. The North Sea Plateau, and possibly parts of the Norwegian Trench, were ice-free close to 19.0 ka, and after this a short readvance occurred in this area. This event is correlated with the advance recorded at Dimlington, Yorkshire, and the corresponding climatostratigraphic unit is denoted the Dimlington Stadial (18.5 ka to 15.1 ka). The Norwegian Trench was deglaciated at 15.1 ka in the Troll area. The data from the North Sea, together with the results from Andwa, northern Norway (Vorren et al . 1988; Møller et al . 1992), suggest that the maximum extent of the last glaciation along the NW-European seaboard from the British Isles to northern Norway was prior to c . 22 ka BP.  相似文献   
4.
The retreat of the Barents Sea Ice Sheet on the western Svalbard margin   总被引:1,自引:0,他引:1  
The deglaciation of the continental shelf to the west of Spitsbergen and the main fjord, Isfjorden. is discussed based on sub-bottom seismic records and scdirncnt cores. The sea lloor on the shelf to the west of Isfjorden is underlain by less than 2 m of glaciomarine sediments over a firm diamicton interpreted as till. In central Isfjordcn up to 10 m of deglaciation sediments were recorded, whereas in cores from the innermost tributary, Billefjorden, less than a meter of ice proximal sediments was recognized between the till and the 'normal' Holocene marine sediments. We conclude that the Barents Sea Ice Sheet terminated along the shelf break during the Late Weichselian glacial maximum. Radiocarbon dates from thc glaciomarine sediments above the till indicate a stepwise deglaciation. Apparently the ice front rctrcatcd from the outermost shelf around 14. 8 ka A dramatic increase in the flux of line-grained glaciomarine sediments around 13 ka is assumed to reflect increased melting and/or current activity due to a climatic warming. This second stage of deglaciation was intcrruptcd by a glacial readvance culminating on the mid-shelf area shortly after 12.4 ka. The glacial readvance, which is correlated with a simultaneous readvance of the Fennoscundian ice sheet along the western coast of Norway, is attributed to the so-called 'Older Dryas' cooling event in the North Atlantic region. Following this glacial readvance the outer part of Isljorden became rapidly deglaciated around 12.3 ka. During the Younger Dryas the inner fjord branches were occupied by large outlet glaciers and possibly the ice liont terminated far out in the main fjord. The remnants of the Harcnts Sea Ice Shcet melted quickly away as a response to the Holocene warming around 10 ka.  相似文献   
5.
Based on field investigations in northern Russia and interpretation of offshore seismic data, we have made a preliminary reconstruction of the maximum ice-sheet extent in the Barents and Kara Sea region during the Early/Middle Weichselian and the Late Weichselian. Our investigations indicate that the Barents and Kara ice sheets attained their maximum Weichselian positions in northern Russia prior to 50 000 yr BP, whereas the northeastern flank of the Scandinavian Ice Sheet advanced to a maximum position shortly after 17 000 calendar years ago. During the Late Weichselian (25 000-10 000 yr BP), much of the Russian Arctic remained ice-free. According to our reconstruction, the extent of the ice sheets in the Barents and Kara Sea region during the Late Weichselian glacial maximum was less than half that of the maximum model which, up to now, has been widely used as a boundary condition for testing and refining General Circulation Models (GCMs). Preliminary numerical-modelling experiments predict Late Weichselian ice sheets which are larger than the ice extent implied for the Kara Sea region from dated geological evidence, suggesting very low precipitation.  相似文献   
6.
Fuzzy set map comparison offers a novel approach to map comparison.The approach is specifically aimed at categorical raster maps and applies fuzzy set techniques, accounting for fuzziness of location and fuzziness of category, to create a similarity map as well as an overall similarity statistic: the Fuzzy Kappa. To date, the calculation of the Fuzzy Kappa (or K-fuzzy) has not been formally derived, and the documented procedure was only valid for cases without fuzziness of category. Furthermore, it required an infinitely large, edgeless map. This paper presents the full derivation of the Fuzzy Kappa; the method is now valid for comparisons considering fuzziness of both location and category and does not require further assumptions. This theoretical completion opens opportunities for use of the technique that surpass the original intentions. In particular, the categorical similarity matrix can be applied to highlight or disregard differences pertaining to selected categories or groups of categories and to distinguish between differences due to omission and commission.  相似文献   
7.
Heggen, H. P., Svendsen, J. I. & Mangerud, J. 2009: River sections at the Byzovaya Palaeolithic site – keyholes into the late Quaternary of northern European Russia. Boreas, 10.1111/j.1502‐3885.2009.00109.x. ISSN 0300‐9483. The geological history of northern European Russia over the past two glacial cycles is reconstructed from the stratigraphy in river bluffs along the upper reaches of the Pechora River. From a till bed near the base of the sections it is inferred that the Barents–Kara Ice Sheet covered the area during the late Saalian (MIS 6). After deglaciation, and prior to the last interglacial, the area was flooded by an ice‐dammed lake, suggesting that the Pechora Basin was blocked by a subsequent ice advance at the very end of the Saalian. Ice‐wedge casts and periglacial sediments reflect a pronounced cooling with formation of permafrost during the Early Weichselian (MIS 5d). An overlying thick sequence of shallow lacustrine sediments accumulated in the ice‐dammed Lake Komi, formed by the advancing Barents–Kara Ice Sheet 80–100 kyr BP (MIS 5b?). Following drainage of the lake, many of the older formations were eroded by fluvial activity. Animal remains found together with palaeolithic artefacts within debrisflow sediments at the base of one of the incised gullies yielded radiocarbon ages around 28 000–30 000 14C yr BP (33–34 cal. kyr BP). The surface with traces of human activities was subsequently covered by aeolian sediments representing the northern extension of the European belt of periglacial coversand that accumulated in the cold and dry climate during the late Weichselian (MIS 2). The results of this work confirm the assumption that the last shelf‐centred ice sheet that covered this part of Russia occurred during the late Saalian (MIS 6), but that this glaciation was followed by a younger and less extensive ice advance that has not been described before. There are no indications that local glaciers originating in the Ural Mountains reached the Pechora River valley throughout the last two glacial cycles.  相似文献   
8.
Recent results concerning the extent of the last Weichselian (Valdaian) Kara Sea Ice Sheet in the area around the Polar Urals and the north-eastern Russian Plain allow reconstruction of the surface form of this part of the ice sheet by using a combination of moraine-ridge elevation data and ice-flow indicators. The resulting reconstruction suggests a thin ice sheet with a pronounced lowering of surface gradient at the transition from bedrock substrate around the Urals to a substrate consisting of unconsolidated sediments in the Pechora Basin. Comparison with similar reconstructions from along the southern and north-western parts of the Laurentide Ice Sheet margin, for which a deformable-bed model of glacier dynamics has been proposed, shows strong similarities in surface gradients and ice thicknesses as well in overall sedimentological and morphological characteristics of the associated basal till-deposits. This suggests comparable styles of glacier dynamics for the two ice sheets. If this first approximation of the Kara Sea Ice Sheet surface form is correct, it can be postulated that at least the south-western part of the ice sheet was much more mobile and dynamic than previously expected.  相似文献   
9.
Romundset, A., Lohne, Ø. S., Mangerud, J. & Svendsen, J. I. 2009: The first Holocene relative sea-level curve from the middle part of Hardangerfjorden, western Norway. Boreas , 10.1111/j.1502-3885.2009.00108.x. ISSN 0300-9483.
The first relative sea-level (RSL) curve from the mid-Hardangerfjorden area covering the entire Holocene is presented. The curve is based on a series of AMS 14C dates on terrestrial plant macrofossils across the isolation level in each of five lakes located between 3.5 and 74.5 m a.s.l. During the first 1200 years, the RSL fell very rapidly from the marine limit at 98 m a.s.l. to 33 m a.s.l., i.e. at a rate of 5.4 cm yr−1. The emergence rate then slowed considerably and was close to standstill 8000–6500 cal. yr BP. However, an emergence of 16.5 m has taken place during the past 6000 years. Radiocarbon dates of terrestrial plant macrofossils from the basal strata in a lake above the marine limit and mollusc shells from glaciomarine silt in the isolation basins yielded a mean age for the local ice-margin retreat of 11 300 cal. yr BP. This verifies that Hardangerfjorden was glaciated during the Younger Dryas – an interpretation that has recently been disputed. The ice margin retreated at a rate of about 300 m yr−1 from the position of the Younger Dryas moraine to this site some 60 km further into the fjord.  相似文献   
10.
Abundant dinocysts in a high-resolution core from Voldafjorden, western Norway, reflect changes in sea surface-water conditions during the last c. 11 300 BP. The period from c. 11 300 to 10 800 BP (Late Allerφd) was characterized by cool temperate surface-waters, high annual temperature variation and relatively strong stratification of the water column, which is characteristic of fjord environments. Due to the stratification of the surface waters, the uppermost layer may have warmed considerably. This generated a principal difference in temperature conditions between land and sea, with slightly higher temperatures in the marine environments. The period from c. 10 800 to 10 000 BP is characterized by very harsh conditions, with sea surface-water temperatures close to freezing and long lasting seasonal sea-ice cover. Similar temperature changes at the beginning and end of the Younger Dryas are characteristic for NW Europe, but those in Voldafjorden differ from those in the open sea and in the Norwegian Channel by being significantly larger. The stratification of the water column during the Late Allerφd was probably broken down because of incipient inflow of temperate normal saline waters, which caused a marked sea surface-water warming, at c. 10 000 BP. Surface-water conditions close to those of today were gradually established between c. 10000 and 9500 BP. However, these interglacial conditions were abruptly interrupted by a significant drop in winter sea surface-water temperature and salinity occurring around 9700 BP. From c. 9500 to 7000 BP the influence of temperate normal saline water masses increased stepwise until full interglacial conditions were established around c. 7000 BP. The change in the dinocyst assemblage around 7000 BP in Voldafjorden was probably related to the onset of the modern Norwegian Coastal Current, previously documented in cores from the Skagerrak and the Mid-Norwegian Continental Shelf. The last c. 7000 BP is characterized by relatively stable surface-water conditions, possibly interrupted by periods of cooling or decreased inflow of temperate normal saline water. Like several other dinoflagellate cyst records from the Norwegian-Greenland Sea, O. centrocarpum peak values are between 4000 and 5000 BP, suggesting a regional-scale oceanographic change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号