首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   0篇
  国内免费   1篇
测绘学   1篇
大气科学   1篇
地球物理   32篇
地质学   105篇
海洋学   7篇
天文学   2篇
自然地理   12篇
  2021年   4篇
  2015年   1篇
  2014年   1篇
  2013年   7篇
  2012年   6篇
  2011年   5篇
  2010年   6篇
  2009年   12篇
  2008年   5篇
  2007年   8篇
  2006年   13篇
  2005年   15篇
  2004年   9篇
  2003年   9篇
  2002年   6篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1989年   3篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1973年   2篇
  1972年   2篇
  1970年   1篇
  1967年   1篇
  1954年   1篇
  1952年   1篇
  1950年   1篇
  1948年   1篇
  1939年   1篇
  1938年   2篇
排序方式: 共有160条查询结果,搜索用时 15 毫秒
1.
Summary. Multiparameter inversions of multimode dispersion data are performed for two large regions: the Pacific Ocean and North America. Anisotropy is taken into account by considering transversely isotropic structures with a vertical axis of symmetry. Two fundamental questions are studied in detail: (1) how to make the inverted models consistent when using different sets of parameters, (2) what is the significance of transversely isotropic inversion for the actual Earth's structure? It is proved that full consistency of the inverted models can be achieved by properly taking into account some a priori informations on the model and it is shown that the use of transversely isotropic models with vertical axis of symmetry does not cause severe limitations when interpreting the data. The models we have obtained are discussed in the light of these investigations. Considering an olivine-rich upper mantle, we make a tentative interpretation of these models in terms of preferred orientation of the a -axis of the crystals in one fixed horizontal direction.  相似文献   
2.
Observations of the Labrador Sea eddy field   总被引:2,自引:0,他引:2  
This paper is an observational study of small-scale coherent eddies in the Labrador Sea, a region of dense water formation thought to be of considerable importance to the North Atlantic overturning circulation. Numerical studies of deep convection emphasize coherent eddies as a mechanism for the lateral transport of heat, yet their small size has hindered observational progress. A large part of this paper is therefore devoted to developing new methods for identifying and describing coherent eddies in two observational platforms, current meter moorings and satellite altimetry. Details of the current and water mass structure of individual eddy events, as they are swept past by an advecting flow, can then be extracted from the mooring data. A transition is seen during mid-1997, with long-lived boundary current eddies dominating the central Labrador Sea year-round after this time, and convectively formed eddies similar to those seen in deep convection modeling studies apparent prior to this time. The TOPEX / Poseidon altimeter covers the Labrador Sea with a loose “net” of observations, through which coherent eddies can seem to appear and disappear. By concentrating on locating and describing anomalous events in individual altimeter tracks, a portrait of the spatial and temporal variability of the underlying eddy field can be constructed. The altimeter results reveal an annual “pulsation” of energy and of coherent eddies originating during the late fall at a particular location in the boundary current, pinpointing the time and place of the boundary current-type eddy formation. The interannual variability seen at the mooring is reproduced, but the mooring site is found to be within a localized region of greatly enhanced eddy activity. Notably lacking in both the annual cycle and interannual variability is a clear relationship between the eddies or eddy energy and the intensity of wintertime cooling. These eddy observations, as well as hydrographic evidence, suggest an active role for boundary current dynamics in shaping the energetics and water mass properties of the interior region.  相似文献   
3.
A numerical model of chemical weathering in soil horizons and underlying bedrock (WITCH) has been coupled to a numerical model of water and carbon cycles in forest ecosystems (ASPECTS) to simulate the concentration of major species within the soil horizons and the stream of the Strengbach granitic watershed, located in the Vosges Mountains (France). For the first time, simulations of solute concentrations in soil layers and in the catchment river have been performed on a seasonal basis. The model is able to reproduce the concentrations of most major species within the soil horizons, as well as catching the first-order seasonal fluctuations of aqueous calcium, magnesium and silica concentrations. However, the WITCH model underestimates concentrations of Mg2+ and silica at the spring of the catchment stream, and significantly underestimates Ca2+ concentration. The deficit in calculated calcium can be compensated for by dissolution of trace apatite disseminated in the bedrock. However, the resulting increased Ca2+ release yields important smectite precipitation in the deepest model layer (in contact with the bedrock) and subsequent removal of large amount of silica and magnesium from solution. In contrast, the model accurately accounts for the concentrations of major species (Ca, Mg and silica) measured in the catchment stream when precipitation of clay minerals is not allowed. The model underestimation of Mg2+ and H4SiO4 concentrations when precipitation of well crystallized smectites is allowed strongly suggests that precipitation of well crystallized clay minerals is overestimated and that more soluble poorly crystallized and amorphous materials may be forming. In agreement with observations on other watersheds draining granitic rocks, this study indicates that highly soluble trace calcic phases control the aqueous calcium budget in the Strengbach watershed.  相似文献   
4.
This work is devoted to the physico-chemical study of cadmium and lead interaction with diatom–water interfaces for two marine planktonic (Thalassiosira weissflogii = TW, Skeletonema costatum = SC) and two freshwater periphytic species (Achnanthidium minutissimum = AMIN, Navicula minima = NMIN) by combining adsorption measurements with surface complexation modeling. Reversible adsorption experiments were performed at 20 °C after 3 h of exposure as a function of pH, metal concentration in solution, and ionic strength. While the shape of pH-dependent adsorption edge is similar among all four diatom species, the constant-pH adsorption isotherm and maximal binding capacities differ. These observations allowed us to construct a surface complexation model for cadmium and lead binding by diatom surfaces that postulates the constant capacitance of the electric double layer and considers Cd and Pb complexation with mainly carboxylic and, partially, silanol groups. Parameters of this model are in agreement with previous acid–base titration results and allow quantitative reproduction of all adsorption experiments.  相似文献   
5.
Avicennia pollen grains have been discovered in marine facies from the Middle Miocene deltaic series of Châteauredon (southeastern France). Based on the local stratigraphy, an age between 15.8 and 16.5 Ma is proposed for these grains. The age and the transgressive context of the Avicennia bearing-levels are in agreement with the maximum extension of the mangrove known in the western Mediterranean during interval N8–NN4 pro parte, in relation with the Langhian highstand. This mangrove occurrence at 42°N latitude during Middle Miocene is a more northern witness of the mangrove sites known in Languedoc and Provence areas. It also implies a lower climatic gradient than today. To cite this article: J.-J. Châteauneuf et al., C. R. Geoscience 338 (2006).  相似文献   
6.
7.
The chemical status of major and trace elements (TE) in various boreal small rivers and watershed has been investigated along a 1500-km transect of NW Russia. Samples were filtered in the field through a progressively decreasing pore size (5, 0.8 and 0.22 μm; 100, 10, and 1 kD) using a frontal filtration technique. All major and trace elements and organic carbon (OC) were measured in filtrates and ultrafiltrates. Most rivers exhibit high concentration of dissolved iron (0.2–4 mg/l), OC (10–30 mg/l) and significant amounts of trace elements usually considered as immobile in weathering processes (Ti, Zr, Th, Al, Ga, Y, REE, V, Pb). In (ultra)filtrates, Fe and OC are poorly correlated: iron concentration gradually decreases upon filtration from 5 μm to 1 kD whereas the major part of OC is concentrated in the <1–10 kD fraction. This reveals the presence of two pools of colloids composed of organic-rich and Fe-rich particles. According to their behavior during filtration and association with these two types of colloids, three groups of elements can be distinguished: (i) species that are not affected by ultrafiltration and are present in the form of true dissolved inorganic species (Ca, Mg, Li, Na, K, Sr, Ba, Rb, Cs, Si, B, As, Sb, Mo) or weak organic complexes (Ca, Mg, Sr, Ba), (ii) elements present in the fraction smaller than 1–10 kD prone to form inorganic or organic complexes (Mn, Co, Ni, Zn, Cu, Cd, and, for some rivers, Pb, Cr, Y, HREE, U), and (iii) elements strongly associated with colloidal iron in all ultrafiltrates (P, Al, Ga, REE, Pb, V, Cr, W, Ti, Ge, Zr, Th, U). Based on size fractionation results and taking into account the nominal pore size for membranes, an estimation of the effective surface area of Fe colloids was performed. Although the total amount of available surface sites on iron colloids (i.e., 1–10 μM) is enough to accommodate the nanomolar concentrations of dissolved trace elements, very poor correlation between TE and surface sites concentrations was observed in filtrates and ultrafiltrates. This strongly suggests a preferential transport of TE as coprecipitates with iron oxy(hydr)oxides. These colloids can be formed on redox boundaries by precipitation of Fe(III) from inflowing Fe(II)/TE-rich anoxic ground waters when they meet well-oxygenated surface waters. Dissolved organic matter stabilizes these colloids and prevents their aggregation and coagulation. Estuarine behavior of several trace elements was studied for two small iron- and organic-rich rivers. While Si, Sr, Ba, Rb, and Cs show a clear conservative behavior during mixing of freshwaters with the White sea, Al, Pb and REE are scavenged with iron during coagulation of Fe hydroxide colloids.  相似文献   
8.
The solubility of the albite-paragonite-quartz mineral assemblage was measured as a function of NaCl and fluorine concentration at 400°C, 500 bars and at 450°C, 500 and 1000 bars. Decreasing Al concentrations with increasing NaCl molality in F-free fluids of low salinity (mNaCl < 0.01) demonstrates that Al(OH)4 dominates Al speciation and is formed according to the reaction 0.5 NaAl3Si3O12H2(cr)+2 H2O = 0.5 NaAlSi3O8(cr)+Al(OH)4+H+. Log K results for this reaction are −11.28 ± 0.10 and −10.59 ± 0.10 at 400°C, 500 bars and 450°C, 1000 bars, respectively. Upon further salinity increase, Al concentration becomes constant (at 400°C, 500 bars) or even rises (at 450°C, 1000 bars). The observed Al behavior can be explained by the formation of NaAl(OH)40(aq) or NaAl(OH)3Cl(aq)0. The calculated constant for the reaction Al(OH)4+Na+=NaAl(OH)40(aq) expressed in log units is equal to 2.46 and 2.04 at 400°C, 500 bars and 450°C, 1000 bars, respectively. These values are in good agreement with the predictions given in Diakonov et al. (1996). Addition of fluoride at m(NaCl) = const = 0.5 caused a sharp increase in Al concentration in equilibrium with the albite-paragonite-quartz mineral assemblage. As fluid pH was also constant, this solubility increase indicates strong aluminum-fluoride complexation with the formation of NaAl(OH)3F(aq)0 and NaAl(OH)2F20(aq), according to 0.5 NaAl3Si3O12H2(cr)+Na++HF(aq)0+H2O = 0.5 NaAlSi3O8(cr)+ NaAl(OH)3F(aq)0+H+, log K = −5.17 and −5.23 at 400°C and 450°C, 500 bars, respectively, and 0.5 NaAl3Si3O12H2(cr)+Na++2 HF(aq)0 = 0.5 NaAlSi3O8(cr)+NaAl(OH)2F20(aq)+H+, log K = −2.19 and −1.64 at the same P-T conditions. It was found that temperature increase and pressure decrease promote the formation of Na-Al-OH-F species. Stability of NaAl(OH)2F20(aq) in low-density fluids also increases relative to NaAl(OH)3F(aq)0. These complexes, together with Al(OH)2F(aq)0 and AlOHF20(aq), whose stability constants were calculated from the corundum solubility measured by Soboleva and Zaraisky (1990) and Zaraisky (1994), are likely to dominate Al speciation in metamorphic fluids containing several ppm of fluorine.  相似文献   
9.
The Palaeoproterozoic units of Terre Adélie show two types of structural domains associated with HT–LP metamorphic conditions: domes and NS–N340° striking vertical shear zones. Shear zones reflect dextral transpressive motions. Domes reflect sub-vertical shortening and principal stretching subparallel to shear zones. They could partly result from longitudinal flow coeval with transpression. Deformations are comparable to those described along the eastern and western boundaries of the Archean Gawler Craton (South-East Australia), which underlines the continuity between these two areas before opening of the Austral Ocean. To cite this article: A. Pelletier et al., C. R. Geoscience 334 (2002) 505–511.  相似文献   
10.
We present a three-dimensional (3D) SV-wave velocity model of the upper mantle beneath the Antarctic plate constrained by fundamental and higher mode Rayleigh waves recorded at regional distances. The good agreement between our results and previous surface wave studies in the uppermost 200 km of the mantle confirms that despite strong differences in data processing, modern surface wave tomographic techniques allow to produce consistent velocity models, even at regional scale. At greater depths the higher mode information present in our data set allows us to improve the resolution compared to previous regional surface wave studies in Antarctica that were all restricted to the analysis of the fundamental mode. This paper is therefore mostly devoted to the discussion of the deeper part of the model. Our seismic model displays broad domains of anomalously low seismic velocities in the asthenosphere. Moreover, we show that some of these broad, low-velocity regions can be more deeply rooted. The most remarkable new features of our model are vertical low-velocity structures extending from the asthenosphere down to the transition zone beneath the volcanic region of Marie Byrd Land, West Antarctica and a portion of the Pacific-Antarctic Ridge close to the Balleny Islands hotspot. A deep low-velocity anomaly may also exist beneath the Ross Sea hotspot. These vertical structures cannot be explained by vertical smearing of shallow seismic anomalies and synthetic tests show that they are compatible with a structure narrower than 200 km which would have been horizontally smoothed by the tomographic inversion. These deep low-velocity anomalies may favor the existence of several distinct mantle plumes, instead of a large single one, as the origin of volcanism in and around West Antarctica. These hypothetical deep plumes could feed large regions of low seismic velocities in the asthenosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号