首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11370篇
  免费   590篇
  国内免费   48篇
测绘学   340篇
大气科学   1036篇
地球物理   3649篇
地质学   4137篇
海洋学   538篇
天文学   1820篇
综合类   50篇
自然地理   438篇
  2023年   48篇
  2022年   80篇
  2021年   203篇
  2020年   227篇
  2019年   161篇
  2018年   506篇
  2017年   508篇
  2016年   687篇
  2015年   505篇
  2014年   587篇
  2013年   804篇
  2012年   657篇
  2011年   604篇
  2010年   540篇
  2009年   603篇
  2008年   432篇
  2007年   327篇
  2006年   334篇
  2005年   274篇
  2004年   269篇
  2003年   241篇
  2002年   217篇
  2001年   192篇
  2000年   182篇
  1999年   130篇
  1998年   158篇
  1997年   161篇
  1996年   100篇
  1995年   129篇
  1994年   137篇
  1993年   91篇
  1992年   76篇
  1991年   76篇
  1990年   110篇
  1989年   70篇
  1988年   59篇
  1987年   76篇
  1986年   70篇
  1985年   76篇
  1984年   73篇
  1983年   81篇
  1982年   83篇
  1981年   84篇
  1980年   62篇
  1979年   65篇
  1978年   69篇
  1977年   63篇
  1975年   56篇
  1973年   63篇
  1971年   52篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
1.
The 20 km2 Galabre catchment belongs to the French network of critical zone observatories (OZCAR; Gaillardet et al., Vadose Zone Journal, 2018, 17(1), 1–24). It is representative of the sedimentary lithology and meteorological forcing found in Mediterranean and mountainous areas. Due to the presence of highly erodible and sloping badlands on various lithologies, the site was instrumented in 2007 to understand the dynamics of suspended sediments (SS) in such areas. Two meteorological stations including measurements of air temperature, wind speed and direction, air moisture, rainfall intensity, raindrop size and velocity distribution were installed both in the upper and lower part of the catchment. At the catchment outlet, a gauging station records the water level, temperature and turbidity (10 min time-step). Stream water samples are collected automatically to estimate SS concentration-turbidity relationships, allowing quantification of SS fluxes with known uncertainty. The sediment samples are further characterized by measuring their particle size distributions and by applying a low-cost sediment fingerprinting approach using spectrocolorimetric tracers. Thus, the contributions of badlands located on different lithologies to total SS flux are quantified at a high temporal resolution, providing the opportunity to better analyse the links between meteorological forcing variability and watershed hydrosedimentary response. The set of measurements was extended to the dissolved phase in 2017. Both stream water electrical conductivity and major ion concentrations are measured each week and every 3 h during storm events. This extension of measurements to the dissolved phase will allow progress in understanding both the origin of the water during the events and the partitioning between particulate and dissolved fluxes of solutes in the critical zone. All data sets are available at https://doi.osug.fr/public/DRAIXBLEONE_GAL/index.html .  相似文献   
2.
We introduce the freely available web-based Water in an Agricultural Landscape—NUčice Database (WALNUD) dataset that includes both hydrological and meteorological records at the Nučice experimental catchment (0.53 km2), which is representative of an intensively farmed landscape in the Czech Republic. The Nučice experimental catchment was established in 2011 for the observation of rainfall–runoff processes, soil erosion processes, and water balance of a cultivated landscape. The average altitude is 401 m a.s.l., the mean land slope is 3.9%, and the climate is humid continental (mean annual temperature 7.9°C, annual precipitation 630 mm). The catchment is drained by an artificially straightened stream and consists of three fields covering over 95% of the area which are managed by two different farmers. The typical crops are winter wheat, rapeseed, and alfalfa. The installed equipment includes a standard meteorological station, several rain gauges distributed across the basin, and a flume with an H-type facing that is used to monitor stream discharge, water turbidity, and basic water quality indicators. Additionally, the groundwater level and soil water content at various depths near the stream are recorded. Recently, large-scale soil moisture monitoring efforts have been introduced with the installation of two cosmic-ray neutron sensors for soil moisture monitoring. The datasets consist of observed variables (e.g. measured precipitation, air temperature, stream discharge, and soil moisture) and are available online for public use. The cross-seasonal, open access datasets at this small-scale agricultural catchment will benefit not only hydrologists but also local farmers.  相似文献   
3.
Mitigating and adapting to global changes requires a better understanding of the response of the Biosphere to these environmental variations. Human disturbances and their effects act in the long term (decades to centuries) and consequently, a similar time frame is needed to fully understand the hydrological and biogeochemical functioning of a natural system. To this end, the ‘Centre National de la Recherche Scientifique’ (CNRS) promotes and certifies long-term monitoring tools called national observation services or ‘Service National d'Observation’ (SNO) in a large range of hydrological and biogeochemical systems (e.g., cryosphere, catchments, aquifers). The SNO investigating peatlands, the SNO ‘Tourbières’, was certified in 2011 ( https://www.sno-tourbieres.cnrs.fr/ ). Peatlands are mostly found in the high latitudes of the northern hemisphere and French peatlands are located in the southern part of this area. Thus, they are located in environmental conditions that will occur in northern peatlands in coming decades or centuries and can be considered as sentinels. The SNO Tourbières is composed of four peatlands: La Guette (lowland central France), Landemarais (lowland oceanic western France), Frasne (upland continental eastern France) and Bernadouze (upland southern France). Thirty target variables are monitored to study the hydrological and biogeochemical functioning of the sites. They are grouped into four datasets: hydrology, fluvial export of organic matter, greenhouse gas fluxes and meteorology/soil physics. The data from all sites follow a common processing chain from the sensors to the public repository. The raw data are stored on an FTP server. After operator or automatic processing, data are stored in a database, from which a web application extracts the data to make them available ( https://data-snot.cnrs.fr/data-access/ ). Each year at least, an archive of each dataset is stored in Zenodo, with a digital object identifier (DOI) attribution ( https://zenodo.org/communities/sno_tourbieres_data/ ).  相似文献   
4.
Long-term experimental watershed studies have significantly influenced our global understanding of hydrological processes. The discovery and characterization of how stream water quantity and quality respond to a changing environment (e.g. land-use change, acidic deposition) has only been possible due to the establishment of catchments devoted to long-term study. One such catchment is the Fernow Experimental Forest (FEF) located in the headwaters of the Appalachian Mountains in West Virginia, a region that provides essential freshwater ecosystem services to eastern and mid-western United States communities. Established in 1934, the FEF is among the earliest experimental watershed studies in the Eastern United States that continues to address emergent challenges to forest ecosystems, including climate change and other threats to forest health. This data note describes available data and presents some findings from more than 50 years of hydrologic research at the FEF. During the first few decades, research at the FEF focused on the relationship between forest management and hydrological processes—especially those related to the overall water balance. Later, research included the examination of interactions between hydrology and soil erosion, biogeochemistry, N-saturation, and acid deposition. Hydro-climatologic and water quality datasets from long-term measurements and data from short-duration studies are publicly available to provide new insights and foster collaborations that will continue to advance our understanding of hydrology in forested headwater catchments. As a result of its rich history of research and abundance of long-term data, the FEF is positioned to continue to advance understanding of forest ecosystems in a time of unprecedented change.  相似文献   
5.
In 1994, a network of small catchments (GEOMON) was established in the Czech Republic to determine input–output element fluxes in semi-natural forest ecosystems recovering from anthropogenic acidification. The network consists from 16 catchments and the primary observations of elements fluxes were complemented by monitoring of biomass stock, element pools in soil and vegetation, and the main water balance components. Over last three decades, reductions of SO2, NOx and NH3 emissions were followed by sulphur (S) and nitrogen (N) deposition reductions of 75% and 30%, respectively. Steeper declines of strong acid anion concentrations compared to cations (Ca, Mg, Na, K, NH4) in precipitation resulted in precipitation pH increase from 4.5 to 5.2 in bulk precipitation and from 4.0 to 5.1 in spruce throughfall. Stream chemistry responded to changes in deposition: S leaching declined. However at majority of catchments soils acted as a net source of S to runoff, delaying recovery. Stream pH increased at acidic streams (pH < 6) and aluminium concentration decreased. Stream nitrate (NO3) concentration declined by 60%, considerably more than N deposition. Stream NO3 concentration was tightly positively related to stream total dissolved nitrogen to total phosphorus (P) ratio, suggesting the role of P availability on N retention. Trends in dissolved organic carbon fluxes responded to both acidification recovery and to runoff temporal variation. An exceptional drought occurred between 2014 and 2019. Over this recent period, streamflow decreased by ≈ 40% on average compared to 1990s, due to the increases of soil evaporation and vegetation transpiration by ≈ 30% and declines in precipitation by ≈ 15% on average across the elevational gradient. Sharp decreases of stream runoff at catchments <650 m a.s.l. corresponded to areas of recent forest decline caused by bark beetle infestation on drought stressed spruce forests. Understanding of the interactions among legacies of acidification and eutrophication, drought effects on the water cycle and forest disturbance dynamics is requisite for effective management of forested ecosystems under anthropogenic influence.  相似文献   
6.
Natural Hazards - Analysis of precipitation trends as well as the observed trends in precipitation concentration can be useful tools for the identification of natural hazards. This study aimed to...  相似文献   
7.

This paper focuses on the shrinkage behavior of soil specimens involving sand, kaolinite, and kaolinite/sand mixtures subjected to desiccation under controlled conditions. Both, free and restrained shrinkage conditions are studied. The experiments show that pure soils do not curl upon unrestrained shrinkage; however, (under the same conditions) kaolinite/sand mixtures exhibited a marked curling. Furthermore, the mixture with the higher sand content broke through the middle of the sample after displaying a significant curling. Soils subjected to restricted shrinkage developed cracks with slight curling. To simulate the observed behavior, a mechanical model able to reproduce the detachment of the soil sample from the mold is proposed in this work and implemented in a fully coupled hydro-mechanical finite-element code. It is concluded that suction and differential shrinkage are key factors influencing the curling behavior of soils. The proposed framework was able to satisfactorily explain and reproduce the different stages and features of soil behavior observed in the experiments.

  相似文献   
8.
Few long-term studies have explored how intensively managed short rotation forest plantations interact with climate variability. We examine how prolonged severe drought and forest operations affect runoff in 11 experimental catchments on private corporate forest land near Nacimiento in south central Chile over the period 2008–2019. The catchments (7.7–414 ha) contain forest plantations of exotic fast-growing species (Pinus radiata, Eucalyptus spp.) at various stages of growth in a Mediterranean climate (mean long-term annual rainfall = 1381 mm). Since 2010, a drought, unprecedented in recent history, has reduced rainfall at Nacimiento by 20%, relative to the long-term mean. Pre-drought runoff ratios were <0.2 under 8-year-old Eucalyptus; >0.4 under 21-year-old Radiata pine and >0.8 where herbicide treatments had controlled vegetation for 2 years in 38% of the catchment area. Early in the study period, clearcutting of Radiata pine (85%–95% of catchment area) increased streamflow by 150 mm as compared with the year before harvest, while clearcutting and partial cuts of Eucalyptus did not increase streamflow. During 2008–2019, the combination of emerging drought and forestry treatments (replanting with Eucalyptus after clearcutting of Radiata pine and Eucalyptus) reduced streamflow by 400–500 mm, and regeneration of previously herbicide-treated vegetation combined with growth of Eucalyptus plantations reduced streamflow by 1125 mm (87% of mean annual precipitation 2010–2019). These results from one of the most comprehensive forest catchment studies in the world on private industrial forest land indicate that multiple decades of forest management have reduced deep soil moisture reservoirs. This effect has been exacerbated by drought and conversion from Radiata pine to Eucalyptus, apparently largely eliminating subsurface supply to streamflow. The findings reveal tradeoffs between wood production and water supply, provide lessons for adapting forest management to the projected future drier climate in Chile, and underscore the need for continued experimental work in managed forest plantations.  相似文献   
9.
Most source-to-sink studies typically focus on the dynamics of clastic sediments and consider erosion, transport and deposition of sediment particles as the sole contributors. Although often neglected, dissolved solids produced by weathering processes contribute significantly in the sedimentary dynamics of basins, supporting chemical and/or biological precipitation. Calcium ions are usually a major dissolved constituent of water drained through the watershed and may facilitate the precipitation of calcium carbonate when supersaturating conditions are reached. The high mobility of Ca2+ ions may cause outflow from an open system and consequently loss. In contrast, in closed basins, all dissolved (i.e. non-volatile) inputs converge at the lowest point of the basin. The endoreic Great Salt Lake basin constitutes an excellent natural laboratory to study the dynamics of calcium on a basin scale, from the erosion and transport through the watershed to the sink, including sedimentation in lake's waterbody. The current investigation focused on the Holocene epoch. Despite successive lake level fluctuations (amplitude around 10 m), the average water level seems to have not been affected by any significant long-term change (i.e. no increasing or decreasing trend, but fairly stable across the Holocene). Weathering of calcium-rich minerals in the watershed mobilizes Ca2+ ions that are transported by surface streams and subsurface flow to the Great Salt Lake (GSL). Monitoring data of these flows was corrected for recent anthropogenic activity (river management) and combined with direct precipitation (i.e. rain and snow) and atmospheric dust income into the lake, allowing estimating the amount of calcium delivered to the GSL. These values were then extrapolated through the Holocene period and compared to the estimated amount of calcium stored in GSL water column, porewater and sediments (using hydrochemical, mapping, coring and petrophysical estimates). The similar estimate of calcium delivered (4.88 Gt) and calcium stored (3.94 Gt) is consistent with the premise of the source-to-sink approach: a mass balance between eroded and transported compounds and the sinks. The amount of calcium deposited in the basin can therefore be predicted indirectly from the different inputs, which can be assessed with more confidence. When monitoring is unavailable (e.g. in the fossil record), the geodynamic context, the average lithology of the watershed and the bioclimatic classification of an endoreic basin are alternative properties that may be used to estimate the inputs. We show that this approach is sufficiently accurate to predict the amount of calcium captured in a basin and can be extended to the whole fossil record and inform on the storage of calcium.  相似文献   
10.
This article explores the suitability of Ostrom and colleagues' social-ecological systems framework (SESF) for the study of resource-dependent communities in Canada. Through a broad literature about resource-dependent communities in Canada, three main approaches are identified, named staples research, rural development, and sustainability studies. Each of these research traditions is analyzed with regards to a common set of criteria – focus, scale, methods, treatment of institutions, and treatment of environmental dimensions. Research in each category is compared and contrasted with the SESF approach, to identify areas of overlap and divergence. Results indicate that the SESF is unlikely to provide additional benefit in terms of in-depth of social analysis, however, it does provide a unique contribution in terms of its coupled approach to conceiving social and ecological systems and its ability to operationalize these relationships through structured variables.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号