首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   1篇
大气科学   1篇
地球物理   4篇
地质学   3篇
天文学   2篇
自然地理   2篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  1996年   1篇
  1993年   1篇
排序方式: 共有12条查询结果,搜索用时 62 毫秒
1.
Fish numbers and biomass in a mitigation salt marsh, Humboldt Bay, California, were examined from July 1981 to October 1982 and were compared with a nearby established marsh to determine whether the restored marsh provided adequate mitigation for habitat lost due to construction of a nearby marina. The use by fish of channels adjacent to the two marshes and the channel at the Woodley Island Marina construction site, for which mitigation was required, were also compared. The mitigation marsh, adjacent to Freshwater Slough channel, was 5.2 km from the marina site. Fishes were sampled by otter trawl, ichthyoplankton net, fixed channel nets, drop traps, and beach seines. Thirty-one fish species and two crab species were collected. Wide ranges in seasonal salinities and water temperatures, and differences in marsh elevation influenced fish use of the mitigation marsh area. The intertidal area of the mitigation marsh, dominated by euryhaline sticklebacks and topsmelts, did not replace intertidal and subtidal habitat lost by marina construction, which had more stable salinities and water temperatures and was used extensively by juvenile English sole.  相似文献   
2.
Nepal has more than 250,000 household biogas digesters that replace firewood with methane for most cooking needs, thus conserving forest resources while reducing indoor air pollution, reducing workloads for energy procurement, and providing a fertilizer slurry by-product. Biogas is also an approved clean development mechanism that reduces carbon emissions, creating a potential revenue stream for the government from global carbon trading markets through aggregating household biogas plants into larger projects for carbon trading. This article traces the shift to biogas as a neoliberal development strategy in Nepal by exploring the connection between biogas as a household energy decision and global carbon trading.  相似文献   
3.
Glaciers in the upstream Manla Reservoir in the Nianchu River Basin are crucial for agriculture and hydropower in the "One River and Two Streams" area. Rising temperature has caused widespread retreat of glaciers on the Tibetan Plateau during the last few decades. In this study, glacier variations under climate change in the Nianchu River Basin are quantified and their influence are evaluated by analyzing 1980 aerial topographic maps, 1990 Landsat TM, 2000 Landsat ETM+, and 2005 CBERS remotely sensed images. It is found that from 1980 to 2005, the debris-free glacier area shrank by 7.3% (13.42 km2). Glacier shrinkage will have a positive effect on agriculture, hydropower and eco-environment in the near future. However, because the large number of small glaciers (<2 km2) will rapidly retreat and disappear in future years, melt water will decrease, ultimately resulting in a long term water shortage. Glacial lakes exhibited rapid expansion due to accelerating glacier retreat during 1980–2005, increasing the possibility of glacial lake outburst floods.  相似文献   
4.
Understanding how land cover change will impact water resources in snow-dominated regions is of critical importance as these locations produce disproportionate runoff relative to their land area. We coupled a land cover evolution model with a spatially explicit, physics-based, watershed process model to simulate land cover change and its impact on the water balance in a 5.0 km2 headwater catchment spanning the alpine–subalpine transition on the Colorado Front Range. We simulated two potential futures both with greater air temperature (+4°C/century) and more precipitation (+15%/century, MP) or less precipitation (−15%/century, LP) from 2000 to 2100. Forest cover in the catchment increased from 72% in 2000 to 84% and 83% in 2050 and to 95% and 92% in 2100 for MP and LP, respectively. Surprisingly, increases in forest cover led to mean increases in annual streamflow production of 12 mm (6%) and 2 mm (1%) for MP and LP in 2050 with an annual control streamflow of 208 mm. In 2100, mean streamflow production increased by 91 mm (44%) and 61 mm (29%) for MP and LP. This result counters previous work as runoff production increased with forested area due to decreases in snow wind-scour and increases in drifting leeward of vegetation, highlighting the need to better understand the impacts of forest expansion on the spatial pattern of snow scour, deposition and catchment effective precipitation. Identifying the hydrologic response of mountainous areas to climate warming induced land cover change is critically important due to the potential water resources impacts on downstream regions.  相似文献   
5.
Mathematical Geosciences - Two common tasks when processing point cloud data sets are surface estimation and point cloud registration. In this paper, a statistical approach is developed to solve...  相似文献   
6.
A New Eddy-Covariance Method Using Empirical Mode Decomposition   总被引:1,自引:1,他引:0  
We introduce a new eddy-covariance method that uses a spectral decomposition algorithm called empirical mode decomposition. The technique is able to calculate contributions to near-surface fluxes from different periodic components. Unlike traditional Fourier methods, this method allows for non-orthogonal contributions to the total flux, which are shown to be errors due to the undersampling of low-frequency processes. Inspection of the non-orthogonal terms with relation to sampling duration and periodicity reveals that a measured periodic process requires approximately six cycles in order to be sufficiently sampled. This determines the maximum eddy size sufficiently measured given a particular sampling duration.  相似文献   
7.
We simulate the evolution of post-impact hydrothermal systems within 45 km and 90 km diameter craters on Mars. We focus on the effects of freezing, which alters the permeability structure and fluid flow compared with unfrozen cases. Discharge rates, total discharge and water-rock ratios increase with permeability. Systems with permeabilities of 10−10 m2 or higher exhibit convection in the hydrosphere, allowing them to derive heat from greater depths. Surface discharges persist for ∼103-105 years under freezing surface conditions, with higher permeabilities permitting longer lifetimes. Maximum discharge rates and total discharges range from 0.1 to 10 m3 s−1 and 109 to 1012 m3, respectively, for systems with permeabilities between 10−14 and 10−12 m2. Near-surface water-rock ratios range from <1 for low permeability, frozen cases to ∼103 for high permeabilities and/or unfrozen cases. Propagation of the freezing front radially inwards focuses flow towards the center of the crater resulting in a diagnostic increase in water-rock ratios there. This process may explain the phyllosilicate assemblages observed at some crater central peaks.  相似文献   
8.

Recently, statistical distributions have been explored to provide estimates of the mineralogical diversity of Earth, and Earth-like planets. In this paper, a Bayesian approach is introduced to estimate Earth’s undiscovered mineralogical diversity. Samples are generated from a posterior distribution of the model parameters using Markov chain Monte Carlo simulations such that estimates and inference are directly obtained. It was previously shown that the mineral species frequency distribution conforms to a generalized inverse Gauss–Poisson (GIGP) large number of rare events model. Even though the model fit was good, the population size estimate obtained by using this model was found to be unreasonably low by mineralogists. In this paper, several zero-truncated, mixed Poisson distributions are fitted and compared, where the Poisson-lognormal distribution is found to provide the best fit. Subsequently, the population size estimates obtained by Bayesian methods are compared to the empirical Bayes estimates. Species accumulation curves are constructed and employed to estimate the population size as a function of sampling size. Finally, the relative abundances, and hence the occurrence probabilities of species in a random sample, are calculated numerically for all mineral species in Earth’s crust using the Poisson-lognormal distribution. These calculations are connected and compared to the calculations obtained in a previous paper using the GIGP model for which mineralogical criteria of an Earth-like planet were given.

  相似文献   
9.
The spatial variability of snow water equivalent (SWE) can exert a strong influence on the timing and magnitude of snowmelt delivery to a watershed. Therefore, the representation of sub-grid or sub-watershed snow variability in hydrologic models is important for accurately simulating snowmelt dynamics and runoff response. The U.S. Geological Survey National Hydrologic Model infrastructure with the precipitation-runoff modelling system (NHM-PRMS) represents the sub-grid variability of SWE with snow depletion curves (SDCs), which relate snow-covered area to watershed-mean SWE during the snowmelt period. The main objective of this research was to evaluate the sensitivity of simulated runoff to SDC representation within the NHM-PRMS across the continental United States (CONUS). SDCs for the model experiment were derived assuming a range of SWE coefficient of variation values and a lognormal probability distribution function. The NHM-PRMS was simulated at a daily time step for each SDC over a 14-year period. Results highlight that increasing the sub-grid snow variability (by changing the SDC) resulted in a consistently slower snowmelt rate and longer snowmelt duration when averaged across the hydrologic response unit scale. Simulated runoff was also found to be sensitive to SDC representation, as decreases in simulated snowmelt rate by 1 mm day−1 resulted in decreases in runoff ratio by 1.8% on average in snow-dominated regions of the CONUS. Simulated decreases in runoff associated with slower snowmelt rates were approximately inversely proportional to increases in simulated evapotranspiration. High snow persistence and peak SWE:annual precipitation combined with a water-limited dryness index was associated with the greatest runoff sensitivity to changing snowmelt. Results from this study highlight the importance of carefully parameterizing SDCs for hydrologic modelling. Furthermore, improving model representation of snowmelt input variability and its relation to runoff generation processes is shown to be an important consideration for future modelling applications.  相似文献   
10.
The emerging technology of wireless sensor networks (WSNs) is an integrated, distributed, wireless network of sensing devices. It has the potential to monitor dynamic hydrological and environmental processes more effectively than traditional monitoring and data acquisition techniques by providing environmental information at greater spatial and temporal resolutions. Furthermore, due to continuing high-performance computing development, these data may be introduced into increasingly robust and complex numerical models; for instance, the parameters of subsurface transport simulators may be automatically updated. Early field deployments and laboratory experiments conducted using in situ sensor technology and WSNs indicated significant fundamental issues concerning sensor and network hardware reliability—suggesting that investigations should first be conducted in controlled environments before field deployment. A first step in this validation process involves evaluating the predictive capability of a computational advection-dispersion transport model when incorporating concentration data from a WSN simulation. Data quality is a major concern, especially when sensor readings are automatically fed into data assimilation procedures. The appropriate employment of an independent WSN fault detection service can ensure that erroneous data (e.g., missing or anomalous values) do not mislead the model. Parameter estimation regularization techniques may then deal with remaining data noise. The primary purpose of this study is to determine the suitability of WSNs (and other in situ data delivery technologies) for use in contaminant transport modeling applications by conducting research in a realistic simulative environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号