首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
  国内免费   1篇
地质学   14篇
  2014年   1篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  1998年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有14条查询结果,搜索用时 437 毫秒
1.
Complex aluminium phosphate-sulphate minerals of the hinsdalite group have been identified as early diagenetic precipitates in Late Permian sandstones of the Northern Calcareous Alps, western Austria. According to their chemical composition they can be regarded as solid solutions between woodhouseite, svanbergite, crandallite and goyazite. The model proposed for their origin involves the dissolution of detrital apatite in a low-pH environment and subsequent precipitation of aluminium phosphate-sulphate minerals, which clearly pre-date syntaxial quartz cementation of the sediment. Their occurrence probably has been overlooked in other sandstones showing diagenetic apatite dissolution. The recognition of such minerals could provide a significant insight into early phosphate diagenesis.  相似文献   
2.
Dark grey, bituminous dolostones interbedded with marine-derived anhydrite horizons occur in the Triassic Reichenhall Formation of western Austria. Fossils are rare and indicate a hostile, hypersaline depositional environment. The dolomites are finely crystalline, fairly stoichiometric, well ordered and non-ferroan. Closely spaced samples (94 in total) of individual dolomite units have been analysed for their carbon and oxygen isotopic composition. The data indicate surprisingly low δ18O values (-5.7 to -2.1%0 PDB), whereas the δ13C values are comparable to the contemporary Triassic seawater (+0.2 to +2.6%0 PDB). Sedimentological evidence, including (i) lack of any evidence for extensive dissolution, (ii) distinct oxygen and carbon isotope ratios of individual dolomite units, (iii) covariance of carbon and oxygen isotopes within some dolomite layers and (iv) inclusions of celestite in dolomite, indicates a nearly closed system after early diagenesis. Combining this information with water-rock interaction calculations suggests that the lightest oxygen isotope compositions are the result of freshwater influx into the basin during very early dolomite formation. A secondary factor may be dolomite recrystallization at elevated temperatures during burial.  相似文献   
3.
The Upper Permian Gröden Formation of the Northern Calcareous Alps (Austria) is composed of alluvial fan and playa lake sediments that were deposited in intramontane basins. A conspicuous feature of these redbeds is the abundance of magnesite in the form of nodules and discrete layers in mudstones as well as intergranular cement in sandstones. Sedimentological observations indicate that the bulk of these carbonates formed during early diagenesis and were probably syndepositional. Petrographically, most magnesites consist of micrite or, less commonly, microspar. An early non-ferroan magnesite is post-dated by later stage ferroan magnesites. Nodules consisting of recrystallized, sparry magnesite were observed only at one location. The general absence of relics of a non-magnesite precursor mineral and the occurrence of shrinkage features suggest that the fine grained magnesites formed by transformation of a hydrated magnesium carbonate mineral, e.g. hydromagnesite. Carbon, oxygen, sulphur and strontium isotope ratios in conjunction with sedimentological criteria support a model of (hydro)magnesite precipitation in an inland playa lake system, which was fed by run-off from the surrounding hinterland. The scarcity of evaporites and the dominance of magnesite over calcite and dolomite suggest that the playa lake brines were low in sulphate and had high Mg/Ca ratios. The source for the high magnesium concentrations is thought to be the weathering of Devonian dolostones and associated massive magnesite deposits in the catchment area.  相似文献   
4.
In the Dolomites of northernmost Italy the carbonate‐platform growth came to a standstill late in the Early Carnian (Late Triassic). The response to this shutdown of shallow‐water carbonate production in the interplatform basins is largely unknown because erosion has removed most of the soft basinal sediments, giving rise to today's scenic landscape of the Dolomites. Mapping in the central part of the Dolomites and newly available core material has recently revealed a well‐preserved succession of basinal rocks within the Heiligkreuz Hospiz Basin (ital. Ospizio di Santa Croce Basin). In this paper, the regional depositional nature of arrested carbonate platform production is reconstructed by tracing its sedimentological record across the slope and into the basin. The uppermost St. Cassian Formation, the time‐equivalent basinal rocks to the prograding carbonate platforms, is overlain by the Heiligkreuz Formation, whose basal succession was deposited in a restricted and oxygen‐depleted environment immediately post‐dating the platform demise. The succession consists mainly of mudrocks, marlstones, and peloidal packstones, with abundant low‐diversity ostracod and pelecypod fauna and early diagenetic dolomite. C and O isotope values of the basal Heiligkreuz Formation, post‐dating platform demise, average + 2·4 and ? 2·4‰, respectively, and largely overlap the isotopic composition of St. Cassian carbonates. A shift toward slightly lower δ13C values in the Heiligkreuz Formation may reflect incorporation of isotopically depleted C released during bacterial sulphate reduction in the Heiligkreuz sediments. Sedimentological, palaeobiological and geochemical indices suggest that near‐normal marine conditions persisted long after the shutdown of shallow water carbonate‐platform growth, although there are clear indications of severely reduced oxygen levels in the restricted Heiligkreuz Hospiz interplatform basin. The Early Carnian platform demise induced a distinct switch in the locus of carbonate production from the shallow‐water platform and slope to the basin floor and a decrease in the availability of dissolved oxygen in the basinal waters. It is inferred that anoxia extended at least temporarily to the top of the carbonate slope, as indicated by the onlap of normal‐marine mounds by dark marlstones of the basal Heiligkreuz Formation.  相似文献   
5.
The start of the Upper Würmian in the Alps was marked by massive fluvioglacial aggradation prior to the arrival of the Central Alpine glaciers. In 1984, the Subcommission on European Quaternary Stratigraphy defined the clay pit of Baumkirchen (in the foreland of the Inn Valley, Austria) as the stratotype for the Middle to Upper Würmian boundary in the Alps. Key for the selection of this site was its radiocarbon chronology, which still ranks among the most important datasets of this time interval in the Alps. In this study we re‐sampled all available original plant specimens and established an accelerator mass spectrometry chronology which supersedes the published 40‐year‐old chronology. The new data show a much smaller scatter and yielded slightly older conventional radiocarbon dates clustering at ca. 31 14C ka BP. When calibrated using INTCAL13 the new data suggest that the sampled interval of 653–681 m in the clay pit was deposited 34–36 cal ka BP. Using two new radiocarbon dates of bone fragments found in the fluvioglacial gravel above the banded clays allows us to constrain the timing of the marked change from lacustrine to fluvioglacial sedimentation to ca. 32–33 cal ka BP, which suggests a possible link to the Heinrich 3 event in the North Atlantic. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
6.
Tectonically isolated blocks of carbonate rocks present within the anhydritic Haselgebirge mélange of the Northern Calcareous Alps record a complex history of deformation and associated deep-burial diagenetic to very low-grade metamorphic reactions. Fluids were hot (up to ≈ 250 °C) and reducing brines charged with carbon dioxide. Individual carbonate outcrops within the mélange record different regimes of brine–rock reactions, ranging from pervasive dolomite recrystallization to dedolomitization. Early diagenetic features in these carbonates were almost entirely obliterated. Matrix dolomite alteration was related to thermochemical sulphate reduction (TSR) recognized by the replacement of anhydrite by calcite + pyrite ± native sulphur. Pyrite associated with TSR is coarsely crystalline and characterized by a small sulphur isotope fractionation relative to the precursor Permian anhydrite. Carbonates associated with TSR show low Fe/Mn ratios reflecting rapid reaction of ferrous iron during sulphide precipitation. As a result, TSR-related dolomite and calcite typically show bright Mn(II)-activated cathodoluminescence in contrast to the dull cathodoluminescence of many (ferroan) carbonate cements in other deep-burial settings. In addition to carbonates and sulphides, silicates formed closely related to TSR, including quartz, K-feldspar, albite and K-mica. 40Ar/39Ar analysis of authigenic K-feldspar yielded mostly disturbed step-heating spectra which suggest variable cooling through the argon retention interval for microcline during the Late Jurassic. This timing coincides with the recently recognized subduction and closure of the Meliata-Hallstatt ocean to the south of the Northern Calcareous Alps and strongly suggests that the observed deep-burial fluid–rock reactions were related to Jurassic deformation and mélange formation of these Permian evaporites.  相似文献   
7.
未熟—低熟油研究现状与存在的问题   总被引:6,自引:0,他引:6  
目前存在多种未熟-低熟油成烃机理的说法,但现有未熟-低熟油生烃模式能否用于指导勘探仍然有待于进一步检验。富类脂可溶有机质生烃被认为是未熟-低熟油生烃模式之一,但依据舀烷(特别是甲藻舀烷)的分布特征,东营凹陷牛庄洼陷南斜坡沙四段富藻类未熟-低熟页岩与八面河油田的原油几乎没有可比性,充分说明低演化阶段的藻类类脂物并非该区原油的主要成烃母质。未熟-低熟油田总与邻近的有利生油凹陷相伴以及某些未熟-低熟油的混合成熟度性质,暗示未熟-低熟油区的成熟油贡献,该结论已为中国两个典型未熟-低熟油田即东营凹陷八面河油田与苏北盆地金湖凹陷的最近研究结果所证实。现有资源量计算方法不太适用于未熟-低熟油,这可能导致了部分油田未熟-低熟资源量计算结果偏高。生物标志物标样定量技术是识别原油未熟-低熟性及油源追踪的有效途径,在油气勘探过程中还应加强地化与地质的有机结合。  相似文献   
8.
Sundqvist, H. S., Holmgren, K., Moberg, A., Spötl, C. & Mangini, A. 2009: Stable isotopes in a stalagmite from NW Sweden document environmental changes over the past 4000 years. Boreas, 10.1111/j.1502‐3885.2009.00099.x. ISSN 0300‐9483. This study of a 4000‐year‐old stalagmite from Korallgrottan in northwestern Sweden highlights the potentials and challenges when using stable isotopes in stalagmites as climate proxies, as well as the fact that the relationship between climate and proxy may change through time. Both the oxygen and the carbon isotopes display an overall trend of enrichment together with decreasing growth rates over the time period covered by the stalagmite, which is considered a generally cooling period according to current palaeoclimate understanding. The stable isotope records show enriched isotopic values during the, for Scandinavia, comparatively cold period AD 1300–1700 and depleted values during the warmer period AD 800–1000. The indication of a negative relationship between measured δ18O and surface temperature concurs with earlier reported stalagmite records from regions with a seasonal snow cover and is further supported by the fact that the stalagmite δ18O record shows general similarities with both regional and hemispheric temperature reconstructions available for the past 500 and 2000 years, respectively. Compared with a stable isotope record of lacustrine carbonates from northern Sweden, however, shifting correlations over time between the two records indicate that a local hydrological change may have taken place at Korallgrottan, or at the lake, compared with around 1000 years ago. The earlier part of the stalagmite δ18O might thus be influenced, to some extent, by another process than the later part, which means that a negative relationship between δ18O and surface temperature might not hold for the entire 4000‐year‐old record.  相似文献   
9.
Stalagmite SV1 from Grotta Savi, located at the SE margin of the European Alps (Italy), is the first Alpine speleothem that continuously spans the past c . 17kyr. Extension rate and δ18Oc record for the Lateglacial probably reflect a combination of temperature and rainfall, with rainfall exerting the dominant effect. Low speleothem calcite δ18 Oc values were recorded from c . 14.5 and 12.35 kyr, during GI-1 (Bølling— Allerød) interstadial, which in our interpretation, was warm and wet. The GS-1 (Younger Dryas) was characterized by a shift to heavier δ18 Oc, coinciding with δ13Cc enrichment and extremely low extension rate (<8 μm/year). These characteristics indicate that GS-1 climate was cool and dry in the SE Alps. Calibration using historical data revealed that there is a positive δ18Oc/dT relationship. A 1°C rise in mean annual temperature should correspond to c . 2.85% increase of SV-1 δc18Oc. We reconstructed a slow and steady temperature rise of c . 0.5°C since 10 kyr BP, in broad agreement with reconstructions from pollen data for SE Europe. Stalagmite SV1 indicates that climate variability in the SE Alps has been influenced by the Mediterranean Sea for the past c . 17 kyr.  相似文献   
10.
A multidisciplinary study, conducted over the carbonate platform deposits of the Liassic Calcari Grigi Group (Southern Alps), highlighted how the use of outcrop analogues can contribute to better define the distribution of dolomitic bodies related to fault networks, to characterize the petrophysical properties of the dolomitic sequence and unravel a complex diagenetic history. This study was carried out in the Asiago Plateau (southernmost part of the eastern Southern Alps, northern Italy) which provides excellent outcrops of the Jurassic Calcari Grigi Group. The dolomitization of the Jurassic sequence is variable in terms of stratigraphic extension and geographic distribution. In the studied localities the dolomitization is generally limited to the Mount Zugna Formation and is characterized by an undulatory front, with ‘sub‐vertical dolomitic chimneys’ along the major faults. Within this unit, and often associated with faults, stacked high‐porosity and permeability bed‐parallel dolomitic bodies are developed that show excellent petrophysical properties. The dolomitic intervals are characterized by pervasive unimodal and patchy polymodal dolomite crystals. Thin section, cathodoluminescence, isotopic and fluid inclusion analyses were used to constrain the paragenetic evolution of the sequence which is similar in all the studied localities. The first dolomitization stage is marked by zoned dolomite crystals with a dull luminescent core. The porosity is thought to have increased after this stage, with dark blue luminescent dolomite accompanied by the corrosion of older crystals. The appearance of saddle dolomite marks the onset of the porosity reduction stage, ending with the infilling of vugs and the remaining open pores with calcite cement. The diagenetic evolution locally stopped at the saddle dolomite stage with the complete occlusion of the remaining pores. Paragenetic and fluid‐inclusion data suggest an evolutionary trend of increasing temperatures and decreasing salinity toward brackish fluids responsible for dolomite and calcite precipitation. The integration of the available data seem to indicate that the diagenetic evolution of the study area is related to: (i) the interplay between evolving fluids (from marine to brackish); (ii) the burial of the sequence (increasing temperature); and (iii) the evolution of the hydrogeological system (fault and fracture network, fluid mixing). This complex paragenetic evolution is strongly linked to the evolution of the porosity framework that evolved from a good, widespread network in the early stages of the burial history to a confined system in the later stages due to reduction of porosity by the deposition of late calcite and dolomite cements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号