首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
  国内免费   2篇
测绘学   1篇
地球物理   3篇
地质学   6篇
海洋学   2篇
天文学   1篇
自然地理   5篇
  2017年   3篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2000年   1篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
In this paper, we present a reflexive examination of how and why we, an academic and a practitioner, arrive at different evaluations of collaborative progress in natural resource management. We situate this examination in our long-standing involvement in designing, adaptively managing, and participating in the Uncompahgre Plateau collaborative forest restoration project in western Colorado, USA. Drawing on the concept of “positionality” in qualitative social science research, we disclose our respective motivations, assumptions, roles, and power relative to the collaborative process. The differences in evaluating collaborative progress stem from our respective professional positionality. For the academic, the guiding interest was to test theory and promote success for his applied research institute; for the practitioner, the motivation was to build trust to allow her field staff the flexibility to implement management actions and demonstrate effectiveness as an agency line officer. These epistemological differences draw attention to the importance of transdisciplinary approaches to producing knowledge from shared practice, starting with efforts to explicitly disclose and honor differing interests, assumptions, and frames of reference stemming from each party’s personal and professional biographies and institutional norms. This reflexivity is essential to advancing knowledge about collaboration in natural resource management.  相似文献   
2.
Well-preserved Holocene terraces along the South Fork Payette River in central Idaho provide a record of fluvial system behavior in a steep mountain watershed characterized by weathered and erodible Idaho Batholith granitic rocks. Terrace deposit ages were provided by 14C dating of charcoal fragments and optically stimulated luminescence (OSL) dating of sandy sediments. Along with pairing of many terrace tread heights, these data indicate episodic downcutting during the Holocene, with a mean incision rate of ~0.9 m/ka from ~7 ka to present. Prior to 7 ka, the river incised to within~3 m of current bankfull, but then aggraded by ~5 m over at least a ~10 km-long reach in an episode centered ~7–6 ka. Aggradation may relate to (1) increased hillslope sediment input from landslides and debris flows in steep tributary basins with abundant grussified granitic bedrock, (2) possible local landslide-damming of the channel, (3) decreased peak discharge, or (4) a combination of these factors. Middle Holocene channel aggradation ca. 7–6 ka corresponds with a period of prolonged and widespread aridity in the northern Rocky Mountains. Between ~5 and 1.3 ka, the river aggraded slightly and then remained stable, forming a prominent terrace tread at ~3 m above current bankfull. Modest aggradation to vertical stability of the South Fork Payette River at the 1.5 m terrace level ~1.0–0.7 ka corresponds with large fire-related debris flows in tributaries during Medieval droughts. Three intervals of incision (~5.5–5 ka, 1.3–1.0 ka and 0.5 ka) correspond with frequent but small fire-related sedimentation events and generally cooler, wetter conditions suggesting increased snowmelt runoff discharges. Other possible drivers of channel incision include an increase in stochastic or climate-modulated large storms and floods and a reduction in delivery of hillslope sediment to the channel. Aggradation is more confidently tied to climate through increases in hillslope sediment delivery and (or) decreased stream power, both likely related to warmer, drier conditions (including high-severity fires) that reduce snowmelt and decrease vegetation cover on steep slopes. Thus, the Holocene terraces of the South Fork Payette River do not reflect simple stepwise incision with periods of vertical stability and lateral migration, but record substantial episodes of aggradation as well. We infer that increases in hillslope erosion and mass movements combined with reduced discharges during prolonged droughts episodically reverse the post-glacial trend of downcutting, in particular during the middle Holocene. The present bedrock-dominated channel implies a strong tendency toward incision in the late Holocene.  相似文献   
3.
The neighborhood effects of foreclosure   总被引:1,自引:0,他引:1  
Neighborhood quality is an important attribute of housing yet its value is rarely known to researchers. We argue that changes in nearby foreclosures reveal changes in neighborhood quality. Thus estimates of the hedonic price of nearby foreclosures provide a glimpse of values that people hold for local neighborhood quality. The empirical models include controls for both spatial dependence in housing prices and in the errors. The estimates indicate that nearby foreclosures produce externalities that are capitalized into home prices—an additional foreclosure within 250 feet of a sale negatively impacts selling price by approximately $1,666, ceteris paribus.  相似文献   
4.
A multi-proxy paleolimnological record obtained from a small, lowland closed-drainage basin located in the Peace-Athabasca Delta (Alberta, Canada), 10 km northwest of the present-day shore of Lake Athabasca, captures evidence of pronounced hydroecological changes over the past ~400 years. Consistent with historical maps produced by early European explorers of western Canada, paleolimnological data support the existence of a Lake Athabasca highstand during the Little Ice Age (LIA), c. 1600–1900 Common Era (CE). This contrasts with interpretations from previous analyses on sediment cores from an upland closed-drainage basin located centrally within the Peace sector of the delta that indicate low water levels during this interval. The different paleohydrological records at these two basins reflect the relative influence of different controls on the lake water balances. During the LIA, the lowland site was influenced by high levels in Lake Athabasca, whereas the elevated basin was outside the range of water-level rise in the lake and its distributaries, and was instead controlled by dry atmospheric conditions that led to evaporative drawdown. Integration of paleolimnological records and historical sources demonstrates that the ecosystem has undergone marked climate-driven hydroecological change over the past century, which is important information for effective management.  相似文献   
5.
6.
Optically stimulated luminescence (OSL) dating of quartz extracts from postglacial aeolian dunes from central Alberta in western Canada points to a landscape that was free of ice as early as 15 ka. Data from profiles where multiple ages have been obtained indicate an increase in depositional age with depth, suggesting that older aeolian sands underlie the dated sequences. The OSL ages present plausible minimum age constraints for the retreat of the Laurentide Ice Sheet (LIS) towards the end of the Late Wisconsinan glaciation. Previous reconstructions of the LIS recession have relied on radiocarbon chronologies, despite the scarcity of contemporaneous radiocarbon-bearing material for large parts of western Canada. While the OSL chronology may be deemed concordant with ice sheet margin retreat models determined using radiocarbon data, there appears to be a systematic lag in the radiocarbon ages which may reflect that aeolian activity is initiated prior to the proliferation of organic material. The OSL chronology reported in this study does not preclude the emergence of a wide deglacial corridor between the LIS and the Cordilleran Ice Sheet by 15 ka or earlier. The possibility of such a passage would resuscitate the notion of an ice-free corridor that appeared early enough to afford the first peoples of the Americas a navigable inland migratory passage from Beringia to south of the North American ice sheets. More broadly, the corridor would also have allowed genetic exchanges between the Beringian refugium and the American middle and low latitudes.  相似文献   
7.
Volcanism on Io: New insights from global geologic mapping   总被引:2,自引:0,他引:2  
We produced the first complete, 1:15 M-scale global geologic map of Jupiter’s moon Io, based on a set of monochrome and color Galileo-Voyager image mosaics produced at a spatial resolution of 1 km/pixel. The surface of Io was mapped into 19 units based on albedo, color and surface morphology, and is subdivided as follows: plains (65.8% of surface), lava flow fields (28.5%), mountains (3.2%), and patera floors (2.5%). Diffuse deposits (DD) that mantle the other units cover ∼18% of Io’s surface, and are distributed as follows: red (8.6% of surface), white (6.9%), yellow (2.1%), black (0.6%), and green (∼0.01%). Analyses of the geographical and areal distribution of these units yield a number of results, summarized below. (1) The distribution of plains units of different colors is generally geographically constrained: Red-brown plains occur >±30° latitude, and are thought to result from enhanced alteration of other units induced by radiation coming in from the poles. White plains (possibly dominated by SO2 + contaminants) occur mostly in the equatorial antijovian region (±30°, 90-230°W), possibly indicative of a regional cold trap. Outliers of white, yellow, and red-brown plains in other regions may result from long-term accumulation of white, yellow, and red diffuse deposits, respectively. (2) Bright (possibly sulfur-rich) flow fields make up 30% more lava flow fields than dark (presumably silicate) flows (56.5% vs. 43.5%), and only 18% of bright flow fields occur within 10 km of dark flow fields. These results suggest that secondary sulfurous volcanism (where a bright-dark association is expected) could be responsible for only a fraction of Io’s recent bright flows, and that primary sulfur-rich effusions could be an important component of Io’s recent volcanism. An unusual concentration of bright flows at ∼45-75°N, ∼60-120°W could be indicative of more extensive primary sulfurous volcanism in the recent past. However, it remains unclear whether most bright flows are bright because they are sulfur flows, or because they are cold silicate flows covered in sulfur-rich particles from plume fallout. (3) We mapped 425 paterae (volcano-tectonic depressions), up from 417 previously identified by Radebaugh et al. (Radebaugh, J., Keszthelyi, L.P., McEwen, A.S., Turtle, E.P., Jaeger, W., Milazzo, M. [2001]. J. Geophys. Res. 106, 33005-33020). Although these features cover only 2.5% of Io’s surface, they correspond to 64% of all detected hot spots; 45% of all hot spots are associated with the freshest dark patera floors, reflecting the importance of active silicate volcanism to Io’s heat flow. (4) Mountains cover only ∼3% of the surface, although the transition from mountains to plains is gradational with the available imagery. 49% of all mountains are lineated and presumably layered, showing evidence of linear structures supportive of a tectonic origin. In contrast, only 6% of visible mountains are mottled (showing hummocks indicative of mass wasting) and 4% are tholi (domes or shields), consistent with a volcanic origin. (5) Initial analyses of the geographic distributions of map units show no significant longitudinal variation in the quantity of Io’s mountains or paterae, in contrast to earlier studies. This is because we use the area of mountain and patera materials as opposed to the number of structures, and our result suggests that the previously proposed anti-correlation of mountains and paterae (Schenk, P., Hargitai, H., Wilson, R., McEwen, A., Thomas, P. [2001]. J. Geophys. Res. 106, 33201-33222; Kirchoff, M.R., McKinnon, W.B., Schenk, P.M. [2011]. Earth Planet. Sci. Lett. 301, 22-30) is more complex than previously thought. There is also a slight decrease in surface area of lava flows toward the poles of Io, perhaps indicative of variations in volcanic activity. (6) The freshest bright and dark flows make up about 29% of all of Io’s flow fields, suggesting active emplacement is occurring in less than a third of Io’s visible lava fields. (7) About 47% of Io’s diffuse deposits (by area) are red, presumably deriving their color from condensed sulfur gas, and ∼38% are white, presumably dominated by condensed SO2. The much greater areal extent of gas-derived diffuse deposits (red + white, 85%) compared to presumably pyroclast-bearing diffuse deposits (dark (silicate tephra) + yellow (sulfur-rich tephra), 15%) indicates that there is effective separation between the transport of tephra and gas in many Ionian explosive eruptions. Future improvements in the geologic mapping of Io can be obtained via (a) investigating the relationships between different color/material units that are geographically and temporally associated, (b) better analysis of the temporal variations in the map units, and (c) additional high-resolution images (spatial resolutions ∼200 m/pixel or better). These improvements would be greatly facilitated by new data, which could be obtained by future missions.  相似文献   
8.
The earthquake cycles that characterize continental-interior areas that are far from active plate boundaries have proven highly cryptic and difficult to resolve. We used a novel paleoseismic proxy to address this issue. Namely, we reconstructed Holocene Mississippi River channels from maps of floodplain strata in order to identify channel perturbations reflective of major displacement events on the high-hazard and mid-plate Reelfoot thrust fault, New Madrid seismic zone, U.S.A. Only three discrete slip events are currently documented for the Reelfoot fault ( AD 900,  AD 1450, and AD 1812). This study extends this record and, thus, illustrates the utility of stratigraphic proxies as paleoseismic tools. We concurrently offer here some of the first quantified response times for tectonically induced channel pattern changes in large alluvial rivers.

We identified at least two cycles of pervasive meandering that were interrupted by channel-straightening responses occurring upstream of the Reelfoot fault scarp. These straightening responses initiated at 2244 BC +/− 269 to 1620 BC +/− 220 and  AD 900, respectively, and each records initiation of a period of Reelfoot fault slip after millennia of relative tectonic quiescence. The second (or New Madrid) straightening response was triggered by the previously known  AD 900 fault slip event, and this initial low sinuosity has been protracted until the modern day by the latter  AD 1450 and AD 1812 events. The first (or Bondurant) straightening response began a period of several hundred to  1400 years of low river sinuosity which evidences a similar period of multiple recurrent displacement events on the Reelfoot fault. These Bondurant events predate the existing paleoseismic record for the Reelfoot fault.

These data offer initial evidence that slip events on the Reelfoot fault were temporally clustered on millennial scales and, thus, offers the first direct evidence for millennial-scale clustering of earthquakes on a continental-interior fault. This carries additional ramifications. Namely, faults that have been quiescent and non-hazardous for millennia could re-enter an enduring period of recurrent hazardous earthquakes with little warning. Likewise, the Reelfoot fault also reveals evidence of temporal clustering of earthquakes on short-term cycles (months), as well as evidence for longer-term reactivation cycles (104–106 years). This introduces the possibility that temporal clustering could be hierarchical on some continental-interior faults.  相似文献   

9.
Diatom responses to 20th century climate-related environmental change were assessed from three high-elevation lakes in the northern Canadian Cordillera. Dominance of small benthic Fragilaria diatoms reflect the generally cold conditions with long periods of ice cover that have characterized these mountain lakes over at least the last ~300 years until the period of recent warming. At the turn of the 20th century, salient shifts in the diatom assemblages reveal individualistic limnological responses with the onset of climate warming trends in northwest Canada. At YK3 Lake, an oligotrophic, chemically dilute, alpine lake, increased representation of the planktonic Cyclotella pseudostelligera may reflect longer ice-free conditions and/or more stable thermal stratification. By contrast, in the more productive, alkaline lakes (BC2 and Deadspruce lakes), changes to more diverse assemblages of periphytic diatoms suggest greater benthic habitat availability, most likely associated with the enhanced growth of aquatic plants with lengthening of the growing seasons. In addition, diatom assemblages from these lakes suggest less alkaline conditions following the onset of 20th century climate warming. Continued alkalinity reduction throughout the 20th century is qualitatively inferred at the lower elevation, treeline lake (Deadspruce Lake), while greater representation of alkaliphilous Fragilaria diatoms after ~1950 suggested increased alkalinity at the alpine BC2 Lake. Our results confirm the sensitivity of diatoms from high-elevation mountain lakes to regional climate change in northwest Canada. Individualistic limnological responses to 20th century warming are potentially attributed to differences in their physical setting (e.g., bedrock geology, elevation, catchment vegetation) in this complex mountain environment.  相似文献   
10.
The Song Gianh is a small‐sized (~3500 km2), monsoon‐dominated river in northern central Vietnam that can be used to understand how topography and climate control continental erosion. We present major element concentrations, together with Sr and Nd isotopic compositions, of siliciclastic bulk sediments to define sediment provenance and chemical weathering intensity. These data indicate preferential sediment generation in the steep, wetter upper reaches of the Song Gianh. In contrast, detrital zircon U‐Pb ages argue for significant flux from the drier, northern Rao Tro tributary. We propose that this mismatch represents disequilibrium in basin erosion patterns driven by changing monsoon strength and the onset of agriculture across the region. Detrital apatite fission track and 10Be data from modern sediment support slowing of regional bedrock exhumation rates through the Cenozoic. If the Song Gianh is representative of coastal Vietnam then the coastal mountains may have produced around 132 000–158 000 km3 of the sediment now preserved in the Song Hong‐Yinggehai Basin (17–21% of the total), the primary depocenter of the Red River. This flux does not negate the need for drainage capture in the Red River to explain the large Cenozoic sediment volumes in that basin but does partly account for the discrepancy between preserved and eroded sediment volumes. OSL ages from terraces cluster in the Early Holocene (7.4–8.5 ka), Pre‐Industrial (550–320 year BP) and in the recent past (ca. 150 year BP). The older terraces reflect high sediment production driven by a strong monsoon, whereas the younger are the product of anthropogenic impact on the landscape caused by farming. Modern river sediment is consistently more weathered than terrace sediment consistent with reworking of old weathered soils by agricultural disruption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号