首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  国内免费   1篇
地质学   6篇
自然地理   1篇
  2020年   1篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2009年   2篇
排序方式: 共有7条查询结果,搜索用时 125 毫秒
1
1.
Integration of extensive fieldwork, remote sensing mapping and 3D models from high-quality drone photographs relates tectonics and sedimentation to define the Jurassic–early Albian diapiric evolution of the N–S Miravete anticline, the NW-SE Castel de Cabra anticline and the NW-SE Cañada Vellida ridge in the Maestrat Basin (Iberian Ranges, Spain). The pre shortening diapiric structures are defined by well-exposed and unambiguous halokinetic geometries such as hooks and flaps, salt walls and collapse normal faults. These were developed on Triassic salt-bearing deposits, previously misinterpreted because they were hidden and overprinted by the Alpine shortening. The Miravete anticline grew during the Jurassic and Early Cretaceous and was rejuvenated during Cenozoic shortening. Its evolution is separated into four halokinetic stages, including the latest Alpine compression. Regionally, the well-exposed Castel de Cabra salt anticline and Cañada Vellida salt wall confirm the widespread Jurassic and Early Cretaceous diapiric evolution of the Maestrat Basin. The NE flank of the Cañada Vellida salt wall is characterized by hook patterns and by a 500-m-long thin Upper Jurassic carbonates defining an upturned flap, inferred as the roof of the salt wall before NE-directed salt extrusion. A regional E-W cross section through the Ababuj, Miravete and Cañada-Benatanduz anticlines shows typical geometries of salt-related rift basins, partly decoupled from basement faults. These structures could form a broader diapiric region still to be investigated. In this section, the Camarillas and Fortanete minibasins displayed well-developed bowl geometries at the onset of shortening. The most active period of diapiric growth in the Maestrat Basin occurred during the Early Cretaceous, which is also recorded in the Eastern Betics, Asturias and Basque-Cantabrian basins. This period coincides with the peak of eastward drift of the Iberian microplate, with speeds of 20 mm/year. The transtensional regime is interpreted to have played a role in diapiric development.  相似文献   
2.
The Oligocene–Miocene carbonate record of the Zagros Mountains, known as the Asmari Formation, constitutes an important hydrocarbon reservoir in southern Iran. This marine carbonate succession, which developed under tropical conditions, is explored in terms of larger foraminiferal biostratigraphy, facies analysis and sequence stratigraphy in a new section at Papoon cropping out in the western Fars sub-basin, in the south-east of the Zagros belt. Facies analysis shows evidence of re-working and transport of skeletal components throughout the depositional system, interpreted here as a carbonate ramp. The foraminifera-based biozones identified include the Globigerina–Turborotalia cerroazulensis–Hantkenina Zone and Nummulites vascus–Nummulites fichteli Zone, both of Rupelian age, the Archaias asmaricus–Archaias hensoni–Miogypsinoides complanatus Zone of Chattian age and the ‘Indeterminate’ Zone of Aquitanian age. The vertical sedimentary evolution of the formation exhibits a progressive shallowing of the facies belts and thus the succession is interpreted as a high-rank low-order regressive systems tract. This long-lasting Rupelian–Aquitanian regressive event is in accordance with accepted global long-term eustatic curves. Accordingly, long-term eustatic trends would have been a factor controlling accommodation during the deposition of the Asmari Formation studied in the western Fars sub-basin.  相似文献   
3.
The attributes of a ‘four-systems-tract’ sequence are at times difficult to identify in outcrop-scale carbonate successions. Poor exposure conditions, variable rates of sediment production, erosion and/or superposition of surfaces that are intrinsic to the nature of carbonate systems frequently conceal or remove its physical features. The late Early–Middle Aptian platform carbonates of the western Maestrat Basin (Iberian Chain, Spain) display facies heterogeneity enabling platform, platform-margin and slope geometries to be identified, and provide a case study that shows all the characteristics of a quintessential four systems tract-based sequence. Five differentiated systems tracts belonging to two distinct depositional sequences can be recognized: the Highstand Systems Tract (HST) and Forced Regressive Wedge Systems Tract (FRWST) of Depositional Sequence A; and the Lowstand Prograding Wedge Systems Tract (LPWST), Transgressive Systems Tract (TST) and subsequent return to a highstand stage of sea-level (HST) of Depositional Sequence B. An extensive carbonate platform of rudists and corals stacked in a prograding pattern marks the first HST. The FRWST is constituted by a detached, slightly cross-bedded calcarenite situated at the toe of the slope in a basinal position. The LPWST is characterized by a small carbonate platform of rudists and corals downlapping over the FRWST and onlapping landwards. The TST exhibits platform backstepping and marly sedimentation. Resumed carbonate production in shelf and slope settings characterizes the second HST. A basal surface of forced regression, a subaerial unconformity, a correlative conformity, a transgressive surface and a maximum flooding surface bound these systems tracts, and are well documented and widely mappable across the platform-to-basin transition area analyzed. Moreover, the sedimentary succession studied is made up of four types of parasequence that constitute stratigraphic units deposited within a higher-frequency sea-level cyclicity. Ten lithofacies associations form these basic accretional units. Each facies assemblage can be ascribed to an inferred depositional environment in terms of bathymetry, hydrodynamic conditions and trophic level. The architecture of the carbonate platform systems reflects a flat-topped non-rimmed depositional profile. Furthermore, these carbonate shelves are interpreted as having been formed in low hydrodynamic conditions. The long-term relative fall in sea-level occurred during the uppermost Early Aptian, which subaerially exposed the carbonate platform established during the first HST and resulted in the deposition of the FRWST, is interpreted as one of global significance. Moreover, a possible relationship between this widespread sea-level drop and glacio-eustasy seems plausible, and could be linked to the cooling event proposed in the literature for the late Early Aptian. Because of the important implications in sequence stratigraphy of this study, the sedimentary succession analyzed herein could serve as an analogue for the application of the four-systems-tract sequence stratigraphic methodology to carbonate systems.  相似文献   
4.
Long‐term relative sea‐level cycles (0·5 to 6 Myr) have yet to be fully understood for the Cretaceous. During the Aptian, in the northern Maestrat Basin (Eastern Iberian Peninsula), fault‐controlled subsidence created depositional space, but eustasy governed changes in depositional trends. Relative sea‐level history was reconstructed by sequence stratigraphic analysis. Two forced regressive stages of relative sea‐level were recognized within three depositional sequences. The first stage is late Early Aptian age (intra Dufrenoyia furcata Zone) and is characterized by foreshore to upper shoreface sedimentary wedges, which occur detached from a highstand carbonate platform, and were deposited above basin marls. The amplitude of relative sea‐level drop was in the order of tens of metres, with a duration of <1 Myr. The second stage of relative sea‐level fall occurred within the Late Aptian and is recorded by an incised valley that, when restored to its pre‐contractional attitude, was >2 km wide and cut ≥115 m down into the underlying Aptian succession. With the subsequent transgression, the incision was backfilled with peritidal to shallow subtidal deposits. The changes in depositional trends, lithofacies evolution and geometric relation of the stratigraphic units characterized are similar to those observed in coeval rocks within the Maestrat Basin, as well as in other correlative basins elsewhere. The pace and magnitude of the two relative sea‐level drops identified fall within the glacio‐eustatic domain. In the Maestrat Basin, terrestrial palynological studies provide evidence that the late Early and Late Aptian climate was cooler than the earliest part of the Early Aptian and the Albian Stage, which were characterized by warmer environmental conditions. The outcrops documented here are significant because they preserve the results of Aptian long‐term sea‐level trends that are often only recognizable on larger scales (i.e. seismic), such as for the Arabian Plate.  相似文献   
5.
6.
The present study analyses the stratal architecture of the Late Jurassic (Kimmeridgian) to Early Cretaceous (Berriasian) sedimentary succession of Mount Salève (E France), and four Berriasian stratigraphic intervals containing four sequence-boundary zones reflecting lowering trends of the relative sea-level evolution. Massive Kimmeridgian limestones characterized by the presence of colonial corals appear to be stacked in an aggrading pattern. These non-bedded thick deposits, which are interpreted to have formed in balance between relative sea-level rise and carbonate accumulation, suggest a keep-up transgressive system. Above, well-bedded Tithonian-to-Berriasian peritidal carbonates reflect a general loss of accommodation. These strata are interpreted as a highstand normal-regressive unit. During the early phase of this major normal regression, the vertical repetition of upper intertidal/lower supratidal lithofacies indicates an aggrading depositional system. This is in agreement with an early stage of a highstand phase of relative sea level. The Berriasian sequence-boundary zones investigated (up to 4 m thick) developed under different climatic conditions and correspond to higher-frequency, forced- and normal-regressive stages of relative sea-level changes. According to the classical sequence-stratigraphic principles, these sequence-boundary zones comprise more than one candidate surface for a sequence boundary. Three sequence-boundary zones studied in Early Berriasian rocks lack coarse siliciclastic grains, contain a calcrete crust, as well as marly levels with higher abundances of illite with respect to kaolinite, and exhibit fossilized algal-microbial laminites with desiccation polygons. These sedimentary features are consistent with more arid conditions. A sequence-boundary zone interpreted for the Late Berriasian corresponds to a coal horizon. The strata above and below this coal contain abundant quartz and marly intervals with a higher kaolinite content when compared to the illite content. Accordingly, this Late Berriasian sequence-boundary zone was formed under a more humid climate. The major transgressive–regressive cycle of relative sea level identified and the climate change from more arid to more humid conditions recognized during the Late Berriasian have been reported also from other European basins. Therefore, the Kimmeridgian to Berriasian carbonate succession of Mount Salève reflects major oceanographic and climatic changes affecting the northern margin of the Alpine Tethys ocean and thus constitutes a reliable comparative example for the analysis of other coeval sedimentary records. In addition, the stratigraphic intervals including sequence-boundary zones characterized in this study constitute potential outcrop analogues for sequence-boundary reflectors mapped on seismic profiles of subsurface peritidal carbonate successions. The detailed sedimentological analyses provided here highlight that on occasions the classical principles of sequence stratigraphy developed on seismic data are difficult to apply in outcrop. A sequence-boundary reflector when seen in outcrop may present successive subaerial exposure surfaces, which formed due to high-frequency sea-level changes that were superimposed on the longer-term trend of relative sea-level fall.  相似文献   
7.
It is now generally accepted that the Oceanic Anoxic Event 1a [OAE 1a] correlates with the lower part of the Leupoldina cabri planktonic foraminiferal Zone. Its calibration against the standard ammonite scale, however, seems to be more problematic. This is due, in part, to the fact that ammonites are scarce and/or of little diagnostic value from a biochronological viewpoint in the lower Aptian pelagic successions where the black shale horizons are better developed.We have been able to characterize OAE 1a geochemically in the relatively shallow water deposits of the eastern Iberian Chain (Maestrat Basin, eastern Spain), where ammonite faunas are rich. The interval corresponding to this event is dominated by the genera Roloboceras and Megatyloceras, accompanied by Deshayesites forbesi and Deshayesites gr. euglyphus/spathi. This assemblage is characteristic of the middle/upper part of the Deshayesites weissi Zone. The first occurrence of the species Deshayesites deshayesi (d'Orbigny), which marks the base of the overlying zone, takes place in our sections some metres above the OAE 1a interval.In the historical stratotype region of Cassis-La Bédoule (southern Provence Basin, southeastern France), the OAE 1a interval is also characterized by the presence of Roloboceras and Megatyloceras. Nevertheless, it has usually been correlated with the D. deshayesi Zone. In our opinion, this discrepancy is due to divergences in the taxonomic assignments of the deshayesitids present in these beds. In fact, the specimens attributed by French authors [Ropolo, P., Conte, G., Gonnet, R., Masse, J.P., Moullade, M., 2000. Les faunes d'Ammonites du Barrémien supérieur/Aptien inférieur (Bédoulien) dans la région stratotypique de Cassis-La Bédoule (SE France): état des connaissances et propositions pour une zonation par Ammonites du Bédoulien-type. Géologie Méditerranéenne 25, 167–175; Ropolo, P., Moullade, M., Gonnet, R., Conte, G., Tronchetti, G., 2006. The Deshayesitidae Stoyanov, 1949 (Ammonoidea) of the Aptian historical stratotype region at Cassis-La Bédoule (SE France), Carnets de Géologie / Notebooks on Geology Memoir 2006/01, 1–46.] to D. deshayesi and D. dechyi can be reinterpreted as belonging to D. forbesi.Following this reinterpretation, the Roloboceras beds (equivalent of OAE 1a) of Cassis-La Bédoule would also correspond to the D. weissi Zone. This age is additionally corroborated by data from southern England [Casey, R., 1961a. The stratigraphical palaeontology of the Lower Greensand. Palaeontology 3, 487–621; Casey, R., 1961b. A Monograph of the Ammonoidea of the Lower Greensand, part III. Palaeontographical Society, London, pp. 119–216], and by our recent observations in Le Teil (Ardèche Platform, southeastern France), where the Roloboceras faunas are also associated with Deshayesites consobrinus and Deshayesites gr. euglyphus, taxa that are characteristic of the D. weissi Zone.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号