首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
  国内免费   2篇
大气科学   11篇
地球物理   6篇
海洋学   9篇
  2020年   1篇
  2014年   2篇
  2013年   2篇
  2009年   1篇
  2008年   7篇
  2007年   2篇
  2006年   1篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1995年   2篇
排序方式: 共有26条查询结果,搜索用时 234 毫秒
1.
The coupling of physics and biology was examined along a 160 km long transect running out from the north coast of South Georgia Island and crossing the Southern Antarctic Circumpolar Current Front (SACCF) during late December 2000. Surface and near surface potential TS properties indicated the presence of three water types: a near-shore group of stations characterised by water which became progressively warmer and fresher closer to South Georgia, an offshore grouping in which sea surface temperatures and those at the winter water level were relatively warm (1.8°C and 0.5°C, respectively), and a third in which surface and winter water temperatures were cooler and reflected the presence of the SACCF. The transect bisected the SACCF twice, revealing that it was flowing in opposite directions, north-westward closest to South Georgia and south-eastwards at its furthest point from the island. The innermost limb was a narrow intense feature located just off the shelf break in 2000–3500 m of water and in which rapid surface baroclinic velocities (up to 35 cm s−1) were encountered. Offshore in the outermost limb, shown subsequently to be a mesoscale eddy that had meandered south from the retroflected limb of the SACCF, flow was broader and slower with peak velocities around 20 cm s−1. Chlorophyll a biomass was generally low (<1 mg m−3) over much of the transect but increased dramatically in the region of the innermost limb of the SACCF, where a deepening of the surface mixed layer was coincident with a subsurface chlorophyll maximum (7.4 mg m−3) and elevated concentrations down to 100 m. The bloom was coincident with depleted nutrient concentrations, particularly silicate, nitrate and phosphate, and although ammonium concentrations were locally depleted the bloom lay within an elevated band (up to 1.5 mmol m−3) associated with the frontal jet. Increased zooplankton abundance, higher copepod body carbon mass and egg production rates all showed a strong spatial integrity with the front. The population structure of the copepods Calanoides acutus and Rhincalanus gigas at stations within the front suggested that rather than simply resulting from entrainment and concentration within the jet, increased copepod abundance was the result of development in situ. Estimates of bloom duration, based on silicate and carbon budget calculations, set the likely duration between 82 and 122 d, a figure supported by the development schedule of the two copepod species. Given this timescale, model outputs from FRAM and OCCAM indicated that particles that occurred on the north side of South Georgia in December would have been in the central-southern Scotia Sea 2–3 months earlier, probably in sea ice affected regions.  相似文献   
2.
The circulation and transport of freshwater generated by an idealized buoyant source is studied using a three-dimensional primitive equation model. Freshwater enters the continental shelf, turns anticyclonically and moves downstream in the direction of Kelvin wave propagation. In the region close to the source, the flow reaches an equilibrium in the bottom boundary layer so that freshwater does not spread offshore any further. This offshore equilibrium distance increases as we move downstream until the freshwater is able to feel the presence of the shelfbreak. A shelfbreak front forms and the shelfbreak prevents any further offshore spreading of freshwater in the bottom boundary layer.Two complimentary mechanisms are responsible for the slow cross-shelf migration of freshwater and subsequent trapping of shelfbreak fronts: bottom stress and topographic changes. The shelfbreak creates an active, dynamic process preventing leakage from the continental shelf region to the slope region. However, the dynamical process that traps the front to the shelfbreak is still unclear.The location of the shelfbreak front depends on four dimensionless parameters: scaled inlet volume transport, scaled breadth, scaled “diffusivity” and scaled shelf width. We develop empirical relations for predicting the location of the frontal bottom intersection, given these parameters.  相似文献   
3.
1.IntroductionArnol'd(1965,1969)variationalprincipleandapriorestimatemethodisessentiallyageneralizationofLyapunovstabilitymethodforfinite--dimensionaldynamicalsystemsininfinite--dimensionalones,andhestudiedthenonlinearstabilityof2--dimensionalincompressibleidealfluidmotionbyuseofthismethod,andestablishedtwotheoremswhichareArnol,d'sfirsttheoremandArnol'd'ssecondtheorem.Eversincethe1980's,manyscientistshavebeenworkingonthissubject,Holmetal.(1985);MclntyreandShepherd(1987);Zeng(1989);Muetal.(1…  相似文献   
4.
5.
The boundary currents over the Western Australian continental shelf and slope consist of the poleward flowing Leeuwin Current (LC) and the equatorward flowing Leeuwin Undercurrent (LUC). Key properties of the LC are its poleward strengthening, deepening to the south, and shelfbreak intensification. The alongshore flow reverses direction below about 300 m, forming the LUC at greater depths. To investigate the processes that cause these features, we obtain solutions to an idealized, regional ocean model of the South Indian Ocean. Solutions are forced by relaxing surface density to a prescribed, meridionally varying density profile ρ*(y) with a timescale of δt. In addition, vertical diffusion is intensified near the ocean surface. This diffusion establishes the minimum thickness over which density is well-mixed. We define this thickness as the “upper layer”. Solutions are obtained with and without a continental shelf and slope off Western Australia and for a range of values of δt and mixing parameters. Within this upper layer, there is a meridional density gradient that balances a near-surface, eastward geostrophic flow. The eastward current downwells near the eastern boundary, leading to westward flow at depth. The upper layer's meridional structure and zonal currents crucially depend on coastal processes, including the presence of topography near the eastern boundary. Kelvin waves inhibit the upper layer from deepening at the coast. Rossby waves propagate the coastal density structure offshore, hence modifying the interior currents. A comparison of the solutions with or without a continental shelf and slope demonstrate that topographic trapping of Rossby waves is a necessary process for maintaining realistic eastern boundary current speeds. Significant poleward speeds occur only onshore of where the upper layer intersects the slope, that is, at a grounding line. Its poleward transport increases when surface-enhanced vertical mixing is applied over a greater depth. When the timescale δt is sufficiently short, the poleward current is nearly barotropic. The current's spatial structure over the shelf is controlled by horizontal mixing, having the structure of a Munk layer. Increasing vertical diffusion deepens the upper layer thickness and strengthens the alongshore current speed. Bottom drag leads to an offshore flow along the bottom, reducing the net onshore transport and weakening the current's poleward acceleration. When δt is long, poleward advection of buoyancy forms a density front near the shelf break, intensifying poleward speeds near the surface. With bottom drag, a bottom Ekman flow advects density offshore, shifting the jet core offshore of the shelf break. The resulting cross-shelf density gradient reverses the meridional current's direction at depth, leading to an equatorward undercurrent.  相似文献   
6.
Air–sea interaction over ocean fronts and eddies   总被引:1,自引:0,他引:1  
Air–sea interaction at ocean fronts and eddies exhibits positive correlation between sea surface temperature (SST), wind speed, and heat fluxes out of the ocean, indicating that the ocean is forcing the atmosphere. This contrasts with larger scale climate modes where the negative correlations suggest that the atmosphere is driving the system. This paper examines the physical processes that lie behind the interaction of sharp SST gradients and the overlying marine atmospheric boundary layer and deeper atmosphere, using high resolution satellite data, field data and numerical models. The importance of different physical mechanisms of atmospheric response to SST gradients, such as the effect of surface stability variations on momentum transfer, pressure gradients, secondary circulations and cloud cover will be assessed. The atmospheric response is known to create small-scale wind stress curl and divergence anomalies, and a discussion of the feedback of these features onto the ocean will also be presented. These processes will be compared and contrasted for different regions such as the Equatorial Front in the Eastern Pacific, and oceanic fronts in mid-latitudes such as the Gulf Stream, Kuroshio, and Agulhas Return Current.  相似文献   
7.
A mechanism for the generation of intrathermocline eddies (ITEs) at wind-forced fronts is examined using a high resolution numerical simulation. Favorable conditions for ITE formation result at fronts forced by “down-front” winds, i.e. winds blowing in the direction of the frontal jet. Down-front winds exert frictional forces that reduce the potential vorticity (PV) within the surface boundary in the frontal outcrop, providing a source for the low-PV water that is the materia prima of ITEs. Meandering of the front drives vertical motions that subduct the low-PV water into the pycnocline, pooling it into the coherent anticyclonic vortex of a submesoscale ITE. As the fluid is subducted along the outcropping frontal isopycnal, the low-PV water, which at the surface is associated with strongly baroclinic flow, re-expresses itself as water with nearly zero absolute vorticity. This generation of strong anticyclonic vorticity results from the tilting of the horizontal vorticity of the frontal jet, not from vortex squashing. During the formation of the ITE, high-PV water from the pycnocline is upwelled alongside the subducting low-PV surface water. The positive correlation between the ITE’s velocity and PV fields results in an upward, along-isopycnal eddy PV flux that scales with the surface frictional PV flux driven by the wind. The relationship between the eddy and wind-induced frictional PV flux is nonlocal in time, as the eddy PV flux persists long after the wind forcing is shut off. The ITE’s PV flux affects the large-scale flow by driving an eddy-induced transport or bolus velocity down the outcropping isopycnal layer with a magnitude that scales with the Ekman velocity.  相似文献   
8.
Abstract

In a previous paper, Bassom et al. (Proc. R. Soc. Lond. A, 455, 1443–1481, 1999) (BKS) investigated finite amplitude αΩ-dynamo wave trains in a thin turbulent, differentially rotating convective stellar shell; nonlinearity arose from α-quenching. There asymptotic solutions were developed based upon the small aspect ratio ε of the shell. Specifically, as a consequence of a prescribed latitudinally dependent α-effect and zonal shear flow, the wave trains have smooth amplitude modulation but are terminated abruptly across a front at some high latitude θF. Generally, the linear WKB-solution ahead of the front is characterised by the vanishing of the complex group velocity at a nearby point θf; this is essentially the Dee–Langer criterion, which determines both the wave frequency and front location.

Recently, Griffiths et al. (Geophys. Astrophys. Fluid Dynam. 94, 85–133, 2001) (GBSK) obtained solutions to the α2Ω-extension of the model by application of the Dee—Langer criterion. Its justification depends on the linear solution in a narrow layer ahead of the front on the short O(θf—θF) length scale; here conventional WKB-theory, used to describe the solution elsewhere, is inadequate because of mode coalescence. This becomes a highly sensitive issue, when considering the transition from the linear solution, which occurs when the dynamo number D takes its critical value D c corresponding to the onset of kinematic dynamo action, to the fully nonlinear solutions, for which the Dee—Langer criterion pertains.

In this paper we investigate the nature of the narrow layer for α2Ω-dynamos in the limit of relatively small but finite α-effect Reynolds numbers R α, explicitly ε½ ? R 2 α ? 1. Though there is a multiplicity of solutions, our results show that the space occupied by the corresponding wave train is generally maximised by a solution with θf—θF small; such solutions are preferred as evinced by numerical simulations. This feature justifies the application by GBSK of the Dee—Langer criterion for all D down to the minimum D min that the condition admits. Significantly, the frontal solutions are subcritical in the sense that |D min| ≤ |D c|; equality occurs as the α-effect Reynolds number tends to zero. We demonstrate that the critical linear solution is not connected by any parameter track to the preferred nonlinear solution associated with D min. By implication, a complicated bifurcation sequence is required to make the connection between the linear and nonlinear states. This feature is in stark contrast to the corresponding results for αΩ-dynamos obtained by BKS valid in the limit R 2 α ? ε½, which, though exhibiting a weak subcriticality, showed that the connection follows a clearly identifiable nonbifurcating track.  相似文献   
9.
A survey was made of the Southwest Indian Ocean frontal region between 30 and 50°E containing the Agulhas Return, Subtropical and Subantarctic Fronts. From CTD, SeaSoar and extracted samples the distribution of nitrate, silicate and chlorophyll a is shown to be strongly linked to the front and water mass structure, varying zonally and meridionally. Surface chlorophyll a concentrations were low to the north and south leaving a band of elevated chlorophyll between the Subtropical and Subantarctic Fronts. The low concentration of chlorophyll a to the north, in Subtropical Water, was clearly due to nitrate limitation. Between the Subtropical and Subantarctic Fronts, where the chlorophyll a concentrations were highest, the surface layer showed silicate depletion limiting diatom growth. South of the Subantarctic Front there were deep extending, low concentrations of chlorophyll a, but despite plentiful supplies of macro-nutrients and a well-stratified surface layer, high concentrations of chlorophyll a were absent. Changes from west to east were associated with the meandering of the Southern Ocean Fronts, especially the Subtropical Front, and their strength and proximity to each other. Concentrations of chlorophyll a peaked where the Agulhas Return, Subtropical and Subantarctic Fronts were in close proximity. Combined frontal structures appear to have particularly pronounced vertical stability and are associated with enhanced upwelling of nutrients and leakage of nutrients across the front. Light levels are high within the shallow stable layer. Such conditions are clearly favourable for biological growth and support the development of larger-celled phytoplankton communities.  相似文献   
10.
The Antarctic Circumpolar Current (ACC) is composed of three major fronts: the Sub-Antarctic Front (SAF), the Polar Front (PF), the Southern ACC Front (SACCF). The locations of these fronts are variable. The PF can shift away from its historical (mean) location by as much as 100 km. The transport of the ACC in Drake Passage varies from its mean (134 Sv) by as much as 60 Sv. A regional numerical circulation model is used to study frontal variability in Drake Passage as affected by a range of volume transports (from 95 Sv to 155 Sv with an interval of 10 Sv). Large transport shifts the fronts northward while the smaller transport causes a southward shift. The mean shifting distance of the PF from the historical mean location is minimum with 135 Sv transport. The SAF and the SACCF are confined by northern and southern walls, respectively, while the PF is loosely controlled by the topography. Due to impact of the eddies and meanders on the PF at several regions in Drake Passage, the PF may move northward to join the SAF or move southward to combine with the SACCF, especially in central Scotia Sea. The SAF and PF are more stable with higher transport. The SAF behaves as a narrow, strong frontal jet with large transport while displaying meanders with smaller transport. In the model simulations, the Ertel Potential Vorticity (EPV) is strongly correlated with the volume transport stream function. EPV at depths between 1000 and 2500 m is correlated with the transport stream function with a coefficient above 0.9. Near the bottom, the correlation is about 0.6 due to the disruptive influence of bottom topography. Within 750 m of the surface, the correlation is much reduced due to the effect of K-Profile Parameterization (KPP) mixing and eddy mixing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号