首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
地球物理   6篇
地质学   4篇
海洋学   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2003年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
The paper provides state-of-the-art information on the following aspects of seismic analysis and design of spread footings supporting bridge piers: (1) obtaining the dynamic stiffness (“springs” and “dashpots”) of the foundation; (2) computing the kinematic response; (3) determining the conditions under which foundation–soil compliance must be incorporated in dynamic structural analysis; (4) assessing the importance of properly modeling the effect of embedment; (5) elucidating the conditions under which the effect of radiation damping is significant; (6) comparing the relative importance between kinematic and inertial response. The paper compiles an extensive set of graphs and tables for stiffness and damping in all modes of vibration (swaying, rocking, torsion), for a variety of soil conditions and foundation geometries. Simplified expressions for computing kinematic response (both in translation and rotation) are provided. Special issues such as presence of rock at shallow depths, the contribution of foundation sidewalls, soil inhomogeneity and inelasticity, are also discussed. The paper concludes with parametric studies on the seismic response of bridge bents on embedded footings in layered soil. Results are presented (in frequency and time domains) for accelerations and displacements of bridge and footing, while potential errors from some frequently employed simplifications are illustrated.  相似文献   
2.
A simplified discrete system in the form of a simple oscillator is developed to simulate the dynamic behavior of a structure founded through footings or piles on compliant ground, under harmonic excitation. Exact analytical expressions for the fundamental natural period and the corresponding damping coefficients of the above system are derived, as function of geometry and the frequency-dependent foundation impedances. In an effort to quantify the coupling between swaying and rocking oscillations in embedded foundations such as piles, the reference system is translated from the footing–soil interface to the depth where the resultant soil reaction is applied, to ensure a diagonal impedance matrix. The resulting eccentricity is a measure of the coupling effect between the two oscillation modes. The amounts of radiation damping generated from a single pile and a surface footing are evaluated. In order to compare the damping of a structure on a surface footing and a pile, the notion of static and geometric equivalence is introduced. It is shown that a pile may generate significantly higher radiation damping than an equivalent footing, thus acting as an elementary protective system against seismic action.  相似文献   
3.
Undrained capacity of strip and circular surface foundations with a zero-tension interface on a deposit with varying degrees of strength heterogeneity is investigated by finite element analyses. The method for simulating the zero-tension interface numerically is validated. Failure envelopes for strip and circular surface foundations under undrained planar V-H-M loading are presented and compared with predictions from traditional bearing capacity theory. Similar capacity is predicted with both methods in V-H and V-M loading space while the traditional bearing capacity approach under-estimates the V-H-M capacity derived from the numerical analyses due to superposition of solutions for load inclination and eccentricity not adequately capturing the true soil response. An approximating expression is proposed to describe the shape of normalised V-H-M failure envelopes for strip and circular foundations with a zero-tension interface. The unifying expression enables implementation in an automated calculation tool resulting in essentially instantaneous generation of combined loading failure envelopes and optimisation of a foundation design as a function of foundation size or material factor. In contrast, the traditional bearing capacity theory approach or direct numerical analyses for a given scenario requires ad-hoc analyses covering a range of input variables in order to obtain the ‘best’ design.  相似文献   
4.
Stone columns as liquefaction countermeasure in non-plastic silty soils   总被引:1,自引:0,他引:1  
In many cases densification with vibro-stone columns cannot be obtained in non-plastic silty soils. Shear stress re-distribution concepts [1] have been previously proposed as means to assess stone columns as a liquefaction countermeasure in such non-plastic silty soils. In this study, centrifuge testing is conducted to assess the performance of this liquefaction countermeasure. Attention is focused on exploring the overall site stiffening effects due to the stone column placement rather than the drainage effects. The response of a saturated silt stratum is analyzed under base dynamic excitation conditions. In a series of four separate model tests, this stratum is studied first without, then with stone columns, as a free-field situation, and with a surface foundation surcharge. The underlying mechanism and effectiveness of the stone columns are discussed based on the recorded dynamic responses. Effect of the installed columns on excess pore pressures and deformations is analyzed and compared. The test results demonstrate that stone columns can be an effective technique in the remediation of liquefaction induced settlement of non-plastic silty deposits particularly under shallow foundations, or vertical effective stresses larger than about 45 kPa (1000 psf) in free field conditions.  相似文献   
5.
This paper reports five case histories of jack-up rig installation in layered soil profiles where a dominate feature was a stronger sand layer overlaying a weaker clay layer. In all cases a relatively continuous load-penetration profile was measured during installation of each of the three spudcan foundations. Summary site-investigation data is provided and consisted of mainly torvane, minature vane, unconsolidated undrained triaxial and pocket penetrometer tests for determining undrained shear strength of the clays and blow counts for deriving the relative density of sand. A statistical averaging method recommended in the InSafeJIP guidelines was used to provide the best fit of the undrained shear strength profile in the clay as this then allowed for spudcan load-penetration profiles to be estimated without introduction of user interpretation or bias. Sand properties were taken as provided in the original site-investigation report. Comparisons between load-penetration profiles calculated using the industry-standard ISO guideline, more recently proposed mechanism-based calculation method and three-dimensional large deformation finite element simulations are made with the measured data, leading to valuable insights for practitioners for estimating behaviour of jack-up installations in problematic sand-over-clay soil profiles.  相似文献   
6.
Circular foundations are widely employed in offshore engineering to support facilities and are generally subjected to fully three-dimensional loading due to the harsh offshore environmental load and complex operational loads. The undrained capacity of surface circular foundations on soil with varying strength profiles and under fully three-dimensional loading is investigated and presented in the form of failure envelopes that obtained from finite element analyses. The combined ultimate limit state of circular foundations is defined as the two-dimensional failure envelopes in resultant H-M loading space accounting for the vertical load and torsion mobilisation. The effects of vertical load and torsion mobilisation, soil shear strength heterogeneity and loading angle from moment to horizontal load on the shape of normalised H-M failure envelopes are explored. A series of expressions are proposed to describe the shape of failure envelopes obtained numerically, enabling essentially instantaneous generation of failure envelopes and optimisation of a circular foundation design based on constraint of any input variable through implementation in an automated calculation tool. An example application is ultimately provided to illustrate how the proposed expressions may be used in practice.  相似文献   
7.
Design of shallow foundations relies on bearing capacity values calculated using procedures that are based in part on solutions obtained using the method of characteristics, which assumes a soil following an associated flow rule. In this paper, we use the finite element method to determine the vertical bearing capacity of strip and circular footings resting on a sand layer. Analyses were performed using an elastic–perfectly plastic Mohr–Coulomb constitutive model. To investigate the effect of dilatancy angle on the footing bearing capacity, two series of analyses were performed, one using an associated flow rule and one using a non-associated flow rule. The study focuses on the values of the bearing capacity factors Nq and Nγ and of the shape factors sq and sγ for circular footings. Relationships for these factors that are valid for realistic pairs of friction angle and dilatancy angle values are also proposed.  相似文献   
8.
The nonlinearity of the soil affects soil–structure interaction to a considerable extent. For a reliable and safe analysis of soil interaction effects on the dynamic response of structures, a more realistic and relatively straightforward method incorporating the nonlinear hysteretic nature of the underlying soil–foundation system needs to be developed. The present paper models the soil–foundation system as a single degree of freedom spring–dashpot system with nonlinear hysteresis in form of elasto-perfectly plastic behavior. Analytical results for the lateral dynamic stiffness on footing have been presented. An example study has been carried out in case of circular footings. It is shown how the analytical results can be used to get a preliminary idea of the lateral dynamic stiffness of footings on a soil medium prior to a detailed computational geo-mechanics analysis provided the static nonlinear load–deformation characteristic of the soil medium is known and can be modeled by a hysteretic elasto-plastic behavior. The corresponding results are presented in a graphical form. The results have been computed showing parametric variations with the change in the amplitude and dimensionless frequency of the non-dimensional excitation force. Analytical results are also presented for the asymptotic cases at low and very high values of dimensionless frequency parameter.  相似文献   
9.
The response of rectangular rigid footings resting on an elastic soil of shear modulus decreasing monotonically with depth is studied. Such profiles are typically encountered after ground improvement. The propagation characteristics of SV/P surface waves are investigated, showing the appearance of cut-off frequencies above which surface waves do not exist. The semi-analytical method of the subdivision of the footing/soil contact area is then used for solving the boundary value problem, whereby the influence functions for the sub-regions are determined by integration of the corresponding surface-to-surface Green׳s functions. Impedance functions are presented over a wide range of frequencies for typical values of the non-homogeneity parameters, the Poisson׳s ratio and the foundation geometry. The salient features that are associated with the non-homogeneity and the appearance of cut-off frequencies are elucidated.  相似文献   
10.
The dynamic response of a rigid footing resting on an elastic tensionless Winkler foundation is examined. A parametric investigation, concerning the effect of the main parameters on the response, is performed for harmonic excitation. The parameters examined include the stiffness and the damping of the foundation, the excitation frequency and the superstructure characteristics and loads. The maximum rocking response, the minimum length of contact after uplift, the maximum stress developed at the soil and the factor of safety with respect to the bearing capacity of the soil are used to measure the effect of each dimensionless parameter. An example for earthquake excitation is also given for a plane frame. The results are compared to the ones of a simplified static approach based on the maximum values of the applied loads, similarly to the procedure that is usually applied in practice. The results show that the static approach can predict the response satisfactorily if resonance does not happen, if the stiffness of the foundation is not large compared to the stiffness of the superstructure and if the dynamic part of the axial force of the column is not large; in these cases, it may underestimate or overestimate the response significantly, depending on the sign of the dynamic axial force that is considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号