首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3753篇
  免费   1141篇
  国内免费   708篇
测绘学   124篇
大气科学   397篇
地球物理   2153篇
地质学   1498篇
海洋学   770篇
天文学   82篇
综合类   272篇
自然地理   306篇
  2024年   7篇
  2023年   30篇
  2022年   105篇
  2021年   119篇
  2020年   123篇
  2019年   199篇
  2018年   166篇
  2017年   188篇
  2016年   191篇
  2015年   201篇
  2014年   250篇
  2013年   216篇
  2012年   234篇
  2011年   284篇
  2010年   209篇
  2009年   291篇
  2008年   253篇
  2007年   309篇
  2006年   287篇
  2005年   221篇
  2004年   239篇
  2003年   203篇
  2002年   175篇
  2001年   119篇
  2000年   125篇
  1999年   117篇
  1998年   102篇
  1997年   107篇
  1996年   97篇
  1995年   70篇
  1994年   64篇
  1993年   71篇
  1992年   47篇
  1991年   39篇
  1990年   34篇
  1989年   23篇
  1988年   17篇
  1987年   16篇
  1986年   10篇
  1985年   7篇
  1984年   2篇
  1983年   4篇
  1982年   4篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1978年   8篇
  1977年   4篇
  1954年   5篇
排序方式: 共有5602条查询结果,搜索用时 31 毫秒
1.
Average velocity in streams is a key variable for the analysis and modelling of hydrological and hydraulic processes underpinning water resources science and practice. The present study evaluates the impact of the sampling duration on the quality of average velocity measurements acquired with contemporary instruments such as Acoustic Doppler Velocimeters (ADV) an Acoustic Doppler Current Profilers (ADCP). The evaluation combines considerations on turbulent flows and principles and configurations of acoustic instruments with practical experience in conducting customized analysis for uncertainty analysis purposes. The study sheds new insights on the spatial and temporal variability of the uncertainty in the measurement of average velocities due to variable sampling durations acting in isolation from other sources of uncertainties. Sampling durations of 90 and 150 s are found sufficient for ADV and ADCP, respectively, to obtain reliable average velocities in a flow affected only by natural turbulence and instrument noise. Larger sampling durations are needed for measurements in most of the natural streams exposed to additional sources of data variability.  相似文献   
2.
Studying seismic wave propagation across rock masses and the induced ground motion is an important topic, which receives considerable attention in design and construction of underground cavern/tunnel constructions and mining activities. The current study investigates wave propagation across a rock mass with one fault and the induced ground motion using a recursive approach. The rocks beside the fault are assumed as viscoelastic media with seismic quality factors, Qp and Qs. Two kinds of interactions between stress waves and a discontinuity and between stress waves and a free surface are analyzed, respectively. As the result of the wave superposition, the mathematical expressions for induced ground vibration are deduced. The proposed approach is then compared with the existing analysis for special cases. Finally, parametric studies are carried out, which includes the influences of fault stiffness, incident angle, and frequency of incident waves on the peak particle velocities of the ground motions.  相似文献   
3.
We model the subnebulae of Jupiter and Saturn wherein satellite accretion took place. We expect each giant planet subnebula to be composed of an optically thick (given gaseous opacity) inner region inside of the planet’s centrifugal radius (where the specific angular momentum of the collapsing giant planet gaseous envelope achieves centrifugal balance, located at rCJ ∼ 15RJ for Jupiter and rCS ∼ 22RS for Saturn) and an optically thin, extended outer disk out to a fraction of the planet’s Roche-lobe (RH), which we choose to be ∼RH/5 (located at ∼150 RJ near the inner irregular satellites for Jupiter, and ∼200RS near Phoebe for Saturn). This places Titan and Ganymede in the inner disk, Callisto and Iapetus in the outer disk, and Hyperion in the transition region. The inner disk is the leftover of the gas accreted by the protoplanet. The outer disk may result from the nebula gas flowing into the protoplanet during the time of giant planet gap-opening (or cessation of gas accretion). For the sake of specificity, we use a solar composition “minimum mass” model to constrain the gas densities of the inner and outer disks of Jupiter and Saturn (and also Uranus). Our model has Ganymede at a subnebula temperature of ∼250 K and Titan at ∼100 K. The outer disks of Jupiter and Saturn have constant temperatures of 130 and 90 K, respectively.Our model has Callisto forming in a time scale ∼106 years, Iapetus in 106-107 years, Ganymede in 103-104 years, and Titan in 104-105 years. Callisto takes much longer to form than Ganymede because it draws materials from the extended, low density portion of the disk; its accretion time scale is set by the inward drift times of satellitesimals with sizes 300-500 km from distances ∼100RJ. This accretion history may be consistent with a partially differentiated Callisto with a ∼300-km clean ice outer shell overlying a mixed ice and rock-metal interior as suggested by Anderson et al. (2001), which may explain the Ganymede-Callisto dichotomy without resorting to fine-tuning poorly known model parameters. It is also possible that particulate matter coupled to the high specific angular momentum gas flowing through the gap after giant planet gap-opening, capture of heliocentric planetesimals by the extended gas disk, or ablation of planetesimals passing through the disk contributes to the solid content of the disk and lengthens the time scale for Callisto’s formation. Furthermore, this model has Hyperion forming just outside Saturn’s centrifugal radius, captured into resonance by proto-Titan in the presence of a strong gas density gradient as proposed by Lee and Peale (2000). While Titan may have taken significantly longer to form than Ganymede, it still formed fast enough that we would expect it to be fully differentiated. In this sense, it is more like Ganymede than like Callisto (Saturn’s analog of Callisto, we expect, is Iapetus). An alternative starved disk model whose satellite accretion time scale for all the regular satellites is set by the feeding of planetesimals or gas from the planet’s Roche-lobe after gap-opening is likely to imply a long accretion time scale for Titan with small quantities of NH3 present, leading to a partially differentiated (Callisto-like) Titan. The Cassini mission may resolve this issue conclusively. We briefly discuss the retention of elements more volatile than H2O as well as other issues that may help to test our model.  相似文献   
4.
Reconnaissance seismic shot in 1971/72 showed a number of well defined seismic anomalies within the East Sengkang Basin which were interpreted as buried reefs. Subsequent fieldwork revealed that Upper Miocene reefs outcropped along the southern margin of the basin. A drilling programme in 1975 and 1976 proved the presence of shallow, gas-bearing, Upper Miocene reefs in the northern part of the basin. Seismic acquisition and drilling during 1981 confirmed the economic significance of these discoveries, with four separate accumulations containing about 750 × 109 cubic feet of dry gas in place at an average depth of 700 m. Kampung Baru is the largest field and contains over half the total, both reservoir quality and gas deliverability are excellent. Deposition in the East Sengkang Basin probably started during the Early Miocene. A sequence of Lower Miocene mudstones and limestones unconformably overlies acoustic basement which consists of Eocene volcanics. During the tectonically active Middle Miocene, deposition was interrupted by two periods of deformation and erosion. Carbonate deposition became established in the Late Miocene with widespread development of platform limestones throughout the East Sengkang Basin. Thick pinnacle reef complexes developed in the areas where reef growth could keep pace with the relative rise in sea level. Most reef growth ceased at the end of the Miocene and subsequent renewed clastic sedimentation covered the irregular limestone surface. Late Pliocene regression culminated in the Holocene with erosion. The Walanae fault zone, part of a major regional sinistral strike-slip system, separates the East and West Sengkang Basins. Both normal and reverse faulting are inferred from seismic data and post Late Pliocene reverse faulting is seen in outcrop.  相似文献   
5.
Two sites of the Deep Sea Drilling Project in contrasting geologic settings provide a basis for comparison of the geochemical conditions associated with marine gas hydrates in continental margin sediments. Site 533 is located at 3191 m water depth on a spit-like extension of the continental rise on a passive margin in the Atlantic Ocean. Site 568, at 2031 m water depth, is in upper slope sediment of an active accretionary margin in the Pacific Ocean. Both sites are characterized by high rates of sedimentation, and the organic carbon contents of these sediments generally exceed 0.5%. Anomalous seismic reflections that transgress sedimentary structures and parallel the seafloor, suggested the presence of gas hydrates at both sites, and, during coring, small samples of gas hydrate were recovered at subbottom depths of 238m (Site 533) and 404 m (Site 568). The principal gaseous components of the gas hydrates wer methane, ethane, and CO2. Residual methane in sediments at both sites usually exceeded 10 mll?1 of wet sediment. Carbon isotopic compositions of methane, CO2, and ΣCO2 followed parallel trends with depth, suggesting that methane formed mainly as a result of biological reduction of oxidized carbon. Salinity of pore waters decreased with depth, a likely result of gas hydrate formation. These geochemical characteristics define some of the conditions associated with the occurrence of gas hydrates formed by in situ processes in continental margin sediments.  相似文献   
6.
Y.C. Minh  W.M. Irvine   《New Astronomy》2006,11(8):594-599
The large-scale structure associated with the 2′N HNCO peak in Sgr B2 [Minh, Y.C., Haikala, L., Hjalmarson, Å., Irvine, W.M., 1998. ApJ 498, 261 (Paper I)] has been investigated. A ring-like morphology of the HNCO emission has been found; this structure may be colliding with the Principal Cloud of Sgr B2. This “HNCO Ring” appears to be centered at (l,b) = (0.7°,−0.07°), with a radius of 5 pc and a total mass of 1.0 × 105 to 1.6 × 106 M. The expansion velocity of the Ring is estimated to be 30–40 km s−1, which gives an expansion time scale of 1.5 × 105 year. The morphology suggests that collision between the Ring and the Principal Cloud may be triggering the massive star formation in the Sgr B2 cloud sequentially, with the latest star formation taking place at the 2′N position. The chemistry related to HNCO is not certain yet, but if it forms mainly via reaction with the evaporated OCN from icy grain mantles, the observed enhancement of the HNCO abundance can be understood as resulting from shocks associated with the collision between the Principal Cloud and the expanding HNCO Ring.  相似文献   
7.
中国大陆科学钻探先导孔零偏VSP资料解释   总被引:3,自引:3,他引:0  
用六级三分量检波器在中国大陆科学钻探先导孔中实施了零偏VSP测量.数据处理结果表明,中国大陆科学钻探孔区超高压变质岩石的地震波速度主要介于4500~7000m/s之间,显著高于一般的沉积岩地区,而且随深度变化不明显.声波测井速度系统地稍低于VSP层速度,可能是由于井壁处岩石的完整性受到破坏而造成的.地震波速度与岩石密度和岩性存在明确的对应关系,榴辉岩的密度和地震波速度均显著高于片麻岩类岩石;由榴辉岩退变生成的斜长角闪岩类岩石,其密度和地震波速度均呈现出较大的变化,主要与其退变质程度有关;超基性岩中的裂隙系统导致其密度和地震波速度大幅度下降.由于榴辉岩与其他岩石类型之间存在较大的波阻抗差异,因此用零偏VSP资料标定该区地震波的地质层位是有效的.关于地震波反射的原因,通过综合研究地震波(包括反射纵波、上行转换横波、井筒波)的特征、岩石速度和密度分布以及井径变化,认为主要是岩性分界面、韧性剪切带和断裂(带),但还有一些因素尚待进一步研究.  相似文献   
8.
9.
Two high resolution spectra of the hot RCrB star DY Cen in the red region are compared. The photospheric absorption lines show a radial velocity variation of 12 kms-1 between 1989 July and 1992 May. Emission components to some CII lines present in 1989 are almost entirely absent in 1992. Nebular forbidden lines of [OI], [NII] and [SII] appear unchanged from 1989 to 1992  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号