首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1399篇
  免费   195篇
  国内免费   130篇
测绘学   33篇
大气科学   282篇
地球物理   357篇
地质学   556篇
海洋学   88篇
天文学   6篇
综合类   169篇
自然地理   233篇
  2024年   1篇
  2023年   16篇
  2022年   27篇
  2021年   44篇
  2020年   30篇
  2019年   52篇
  2018年   42篇
  2017年   25篇
  2016年   36篇
  2015年   47篇
  2014年   81篇
  2013年   118篇
  2012年   85篇
  2011年   78篇
  2010年   102篇
  2009年   68篇
  2008年   95篇
  2007年   97篇
  2006年   89篇
  2005年   109篇
  2004年   83篇
  2003年   71篇
  2002年   49篇
  2001年   60篇
  2000年   46篇
  1999年   33篇
  1998年   37篇
  1997年   21篇
  1996年   21篇
  1995年   28篇
  1994年   2篇
  1993年   12篇
  1992年   5篇
  1991年   4篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1984年   3篇
  1982年   1篇
排序方式: 共有1724条查询结果,搜索用时 171 毫秒
1.
Approach to Mountain Hazards in Tibet, China   总被引:1,自引:1,他引:0  
Tibet is located at the southwest boundary of China. It is the main body of the Qinghai-Tibet Plateau, the highest and the youngest plateau in the world. Owing to complicated geology, Neo-tectonic movements, geomorphology, climate and plateau environment, various mountain hazards, such as debris flow, flash flood, landslide, collapse, snow avalanche and snow drifts, are widely distributed along the Jinsha River (the upper reaches of the Yangtze River), the Nu River and the Lancang River in the east, and the Yarlungzangbo River, the Pumqu River and the Poiqu River in the south and southeast of Tibet. The distribution area of mountain hazards in Tibet is about 589,000 km^2, 49.3% of its total territory. In comparison to other mountain regions in China, mountain hazards in Tibet break out unexpectedly with tremendously large scale and endanger the traffic lines, cities and towns, farmland, grassland, mountain environment, and make more dangers to the neighboring countries, such as Nepal, India, Myanmar and Bhutan. To mitigate mountain hazards, some suggestions are proposed in this paper, such as strengthening scientific research, enhancing joint studies, hazards mitigation planning, hazards warning and forecasting, controlling the most disastrous hazards and forbidding unreasonable human exploring activities in mountain areas.  相似文献   
2.
In recent years, many coal-producing countries have paid great attention to the land subsidence causedby coal cutting. In China, because of the dense population in coalfield areas, the land subsidence hazard is more seri-ous. After a brief analysis on the mechanism of land subsidence, this paper gives a comprehensive and systematical ac-count on all kinds of hazards caused by the land subsidence in China. The study shows that land subsidence has endan-gered land, buildings, traffic and communication lines, dykes and dams. It also causes damage to ecological and socialenvironment. In order to lessen the hazard of land subsidence, preventive measures should be taken to reduce the col-lapse amount, such as extraction with stowing, banded mining system, succession and coordination mining system, orhigh-pressure mudflow between rock strata. Measures of reinforcing or moving certain buildings should also be taken toreduce the destructive degree. In order to harness the subsidence land and bring them under control for fanning, mea-sures should be taken such as filling with spoil or fine breeze, excavating the deeper and covering the shallower land.  相似文献   
3.
文章从贵港市矿产资源情况出发 ,通过对开发现状及存在问题的分析 ,探讨保证资源的合理开发和永续利用 ,为经济建设提供物质支撑的理念 ,提出了矿业可持续发展的对策。  相似文献   
4.
菏泽市地质灾害类型主要为地震、地面塌陷、地面沉降、地裂缝、砂土液化、土地盐渍化及地氟病等,其发育与分布受地质构造、水文地质条件的控制以及气象、人类活动等因素的影响。就其分布、危害、致灾原因等做了分析,并提出了防治建议和对策。  相似文献   
5.
Many different runout prediction methods can be applied to estimate the mobility of future debris flows during hazard assessment. The present article reviews the empirical, analytical, simple flow routing and numerical techniques. All these techniques were applied to back-calculate a debris flow, which occurred in 1982 at La Guingueta catchment, in the Eastern Pyrenees. A sensitivity analysis of input parameters was carried out, while special attention was paid to the influence of rheological parameters. We used the Voellmy fluid rheology for our analytical and numerical modelling, since this flow resistance law coincided best with field observations. The simulation results indicated that the “basal” friction coefficients rather affect the runout distance, while the “turbulence” terms mainly influence flow velocity. A comparison of the velocity computed on the fan showed that the analytical model calculated values similar to the numerical ones. The values of our rheological parameters calibrated at La Guingueta agree with data back-calculated for other debris flows. Empirical relationships represent another method to estimate total runout distance. The results confirmed that they contain an important uncertainty and they are strictly valid only for the conditions, which were the basis for their development. With regards to the simple flow routing algorithm, this methods could satisfactorily simulate the total area affected by the 1982 debris flow, but it was not able to directly calculate total runout distance and velocity. Finally, a suggestion on how different runout prediction methods can be applied to generate debris-flow hazard maps is presented. Taking into account the definition of hazard and intensity, the best choice would be to divide the resulting hazard maps into two types: “final hazard maps” and “preliminary hazard maps”. Only the use of numerical models provided final hazard maps, because they could incorporate different event magnitudes and they supplied output-values for intensity calculation. In contrast, empirical relationships and flow routing algorithms, or a combination of both, could be applied to create preliminary hazard maps. The present study only focussed on runout prediction methods. Other necessary tasks to complete the hazard assessment can be looked up in the “Guidelines for landslide susceptibility, hazard and risk zoning” included in this Special Issue.  相似文献   
6.
The aim of this paper is to analyze the reactivation mechanism of ancient earth flows, with a view to gleaning information that can subsequently be utilized to formulate a risk-reduction strategy. All considerations made herein are the result of direct experience and observation of actual events which have occurred over the past few decades in the Northern Apennines. Particular attention has been paid to the analysis of the evolution of landslides during actual reactivation, acknowledging a typical, recurring succession of events that precede the failure of the slope. The hazard assessment of these large landslide bodies, which are of slope scale, constitutes a thorny problem, especially in view of the inapplicability of traditional deterministic models such as limit equilibrium stability analysis. Nevertheless, a site-specific assessment of probability of reactivation of these large and ancient earth flows is fundamental to effective land-use planning.  相似文献   
7.
This paper provides an overview of the history and current status of landslide susceptibility and hazard mapping for land-use zoning in Australia. It also describes a case study of landslide hazard mapping in a medium density, coastal, suburban residential area of metropolitan Sydney, New South Wales, Australia, with relatively steep terrain. Issues covered include identification and mapping of existing and potential landslides, and susceptibility and hazard zoning for regulatory management and land-use planning. The method involves application of the principles contained within the AGS (2000) guideline, and as updated by the AGS (2007 a,b,c,d,e) suite of guidelines.  相似文献   
8.
Evolution of coastlines in karst areas may be strongly controlled by dissolution processes which favour the development of surface and subsurface landforms. The generation of caves in these environments is commonly favoured by the mixing between fresh and brackish waters. The sinkholes resulting from the upward propagation of the caves may interfere with the anthropogenic environment and cause damage to human elements (property and activities). To highlight the often underestimated importance of karst phenomena in coastal areas, we have analyzed a coastal stretch of Apulia, in southern Italy. The study area, covering an extension of about 6 km2, is situated in the Ionian coast, and presents several interesting karst landforms that are generally connected to caves. Tens of sinkholes were mapped through field surveys, multi-year aerial-photographs (dating back to the 1940s) and archival research. We have performed a morphometric analysis of the sinkholes. The analysis describes the main parameters of the sinkholes (area, length, width, and depth), and the control exerted by the main discontinuity systems in the area. The detrimental effects derived from interaction between human environment and these karst landforms is also under consideration. A sinkhole susceptibility map, which may provide useful information for planners, developers and the insurance industry has eventually been produced through application of a decision tree model.  相似文献   
9.
National flood discharge mapping in Austria   总被引:5,自引:0,他引:5  
This article presents the approach and the results of a study in which 30, 100 and 200 year return period flood discharges were estimated for 26,000 km of Austrian streams. Three guiding principles were adopted: combination of automatic methods and manual assessments by hydrologists to allow speedy processing and account for the local hydrological situation; combination of various sources of information including flood peak samples, rainfall data, runoff coefficients and historical flood data; and involvement of the Hydrographic Services to increase the accuracy and enhance the acceptance of results. The flood discharges for ungauged catchments were estimated by the Top-kriging approach with manual adjustment to the local flood characteristics. The adopted combination approach proved to be very efficient both in terms of the project time required and in terms of the accuracy and acceptability of the estimated flood discharges of given return periods.  相似文献   
10.
Prediction of coastal hazards due to climate change is fraught with uncertainty that stems from complexity of coastal systems, estimation of sea level rise, and limitation of available data. In-depth research on coastal modeling is hampered by lack of techniques for handling uncertainty, and the available commercial geographical information systems (GIS) packages have only limited capability of handling uncertain information. Therefore, integrating uncertainty theory with GIS is of practical and theoretical significance. This article presents a GIS-based model that integrates an existing predictive model using a differential approach, random simulation, and fuzzy set theory for predicting geomorphic hazards subject to uncertainty. Coastal hazard is modeled as the combined effects of sea-level induced recession and storm erosion, using grid modeling techniques. The method is described with a case study of Fingal Bay Beach, SE Australia, for which predicted responses to an IPCC standard sea-level rise of 0.86 m and superimposed storm erosion averaged 12 m and 90 m, respectively, with analysis of uncertainty yielding maximum of 52 m and 120 m, respectively. Paradoxically, output uncertainty reduces slightly with simulated increase in random error in the digital elevation model (DEM). This trend implies that the magnitude of modeled uncertainty is not necessarily increased with the uncertainties in the input parameters. Built as a generic tool, the model can be used not only to predict different scenarios of coastal hazard under uncertainties for coastal management, but is also applicable to other fields that involve predictive modeling under uncertainty.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号