首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
测绘学   1篇
地球物理   5篇
地质学   8篇
自然地理   7篇
  2017年   1篇
  2014年   1篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   3篇
  2002年   1篇
  1990年   1篇
  1988年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有21条查询结果,搜索用时 187 毫秒
1.
In this paper, we apply current geological knowledge on faulting processes to digital processing of Digital Elevation Models (DEM) in order to pinpoint locations of active faults. The analysis is based on semiautomatic interpretation of 20- and 60-m DEM and their products (slope, shaded relief). In Northern–Eastern Attica, five normal fault segments were recognized on the 20-m DEM. All faults strike WNW–ESE. The faults are from west to east: Thriassion (THFS), Fili (FIFS), Afidnai (AFFS), Avlon (AVFS), and Pendeli (PEFS) and range in length from 10 to 20 km. All of them show geomorphic evidence for recent activity such as prominent range-front escarpments, V-shaped valleys, triangular facets, and tilted footwall areas. However, escarpment morphometry and footwall geometry reveal systematic differences between the “external” segments (PEFS, THFS, and AVFS) and the “internal” segments (AFFS and FIFS), which may be due to mechanical interaction among segments and/or preexisting topography. In addition, transects across all five escarpments show mean scarp slope angles of 22.1°±0.7° for both carbonate and metamorphic bedrock. The slope angle equation for the external segments shows asymptotic behaviour with increasing height. We make an empirical suggestion that slope angle is a function of the long-term fault slip rate which ranges between 0.13 and 0.3 mm/yr. The identified faults may rupture up to magnitude 6.4–6.6 earthquakes. The analysis of the 60-m DEM shows a difference in fault patterns between Western and Northern Attica, which is related to crustal rheology variations.  相似文献   
2.
The effects of variations of drainage basin morphometry and relief characteristics on flood peak magnitude and time-to-peak are investigated using simulated stream networks. The networks are produced by three models: headward growth, systematic capture, and minimum power relaxation. Translational and kinematic wave flood routing were used to generate synthetic hydrographs. Peak discharge and time-to-peak are predictable to a high degree by five different sets of morphometric-relief parameters. In order of decreasing order of importance in predictive ability the parameters characterize basin size, relative relief, basin concavity, and basin shape. Both simulated and natural stream networks exhibit strong dependence of planimetric morphometry upon basin concavity. The effect of this dependency is to increase the effect of basin concavity upon flood hydrographs.  相似文献   
3.
This work analyzes various morphometric characteristics of the Colangüil river basin in order to evaluate flash flood hazards. Such high-water events pose a risk to the similarly named small village located at the basin’s foot area. For this purpose, the basin is divided into seven sub-basins and some basic measurements (surface, perimeter, basin length, river beds, elevations and slope of the main river bed, and of a number of minor river beds) are calculated. These measurements permit to predict approximately the behavior of the basin in the presence of a series of theoretical rainstorms that may generate unusual runoff volumes that make up such flash floods.  相似文献   
4.
One hundred and sixty-two microspheric and 110 megalospheric specimens of the Late Cretaceous benthic foraminifer Gabonella elongata de Klasz and Meijer were picked from 13 borehole samples and analyzed for stratigraphical variation in four variables. Principal component and canonical variate analyses indicate a larger inter-level variation in the relative size of the final chamber in the microspheric generation than in the megalospheric. The morphometrical measurements were weighed against the concentration of 13 chemical elements determined at each level. The analyses indicate that G. elongata developed large tests in arenaceous sediments, whereas carbonaceous, argillaceous sediments seem to have resulted in small tests. Especially the microspheric generation tends to show greater reduction in growth in the ultimate chamber in carbonaceous, argillaceous sediments than in more arenaceous. This indicates that the genetically controlled growth pattern of the last chamber may be influenced by environmental factors such as agitation and clearness of the water.  相似文献   
5.
Ian S. Evans   《Geomorphology》2006,80(3-4):245-266
Headward and downward erosion near glacier sources, at rates exceeding fluvial erosion, is important in recent discussions of orogen development and the limits to relief. This relates to a long history of debate on how the form of glacial cirques develops, which can be advanced by relating shape to size in large data sets. For 260 cirques in Wales, this confirms different rates of enlargement in the three dimensions: faster in length than in width, and slower in vertical dimension whether expressed as overall height range, axial height range or wall height. Maximum gradient, plan closure and number of cols increase with overall size. This allometric development applies over different cirque types, regions and rock types. Headwall retreat, often by collapse following glacial erosion at the base, is faster than downward erosion. Welsh cirques form a scale-specific population and, as in other regions, size variables follow Gaussian distributions on a logarithmic scale. As in England, width commonly exceeds length. Vertical dimensions correlate with length more than with width. Cirque form varies with geology, but also with relief as both vary between mountain groups. The main contrast is between larger, better-developed cirques and higher relief on volcanic rocks in the north-west, and smaller, less-developed cirques and lower relief on sedimentary rocks in the south.  相似文献   
6.
A comparison of methods used to estimate the height of sand dunes on Mars   总被引:1,自引:2,他引:1  
The collection of morphometric data on small-scale landforms from other planetary bodies is difficult. We assess four methods that can be used to estimate the height of aeolian dunes on Mars. These are (1) stereography, (2) slip face length, (3) profiling photoclinometry, and (4) Mars Orbiter Laser Altimeter (MOLA). Results show that there is good agreement among the methods when conditions are ideal. However, limitations inherent to each method inhibited their accurate application to all sites. Collectively, these techniques provide data on a range of morphometric parameters, some of which were not previously available for dunes on Mars. They include dune height, width, length, surface area, volume, and longitudinal and transverse profiles. The utilization of these methods will facilitate a more accurate analysis of aeolian dunes on Mars and enable comparison with dunes on other planetary surfaces.  相似文献   
7.
A field survey of thirty stream junctions from a small watershed, together with data collected by Miller (1958), allowed us to investigate morphometric adjustments occurring at confluences. The model proposed by Roy and Woldenberg (1986) was slightly modified and used as a tool for morphometric analysis. Two parameters are necessary in order to evaluate the rate of change in channel size at a confluence: the area ratio (channel capacity above the confluence: channel capacity below the confluence) and the discharge ratio (discharge of the minor tributary: discharge of the major tributary). Our data show that total channel capacity tends to decline below most confluences. A reduction in cross-sectional area implies an increase in average flow velocity. This interpretation is consistent with Lyell's observations and with results from recent flume experiments (Best and Reid, 1984).  相似文献   
8.
The Lluta collapse of northern Chile is one of the oldest recognizable landslides (>2.5 Ma) in a hyperarid continental setting. This paper develops a conceptual landscape evolution model of the Lluta collapse and analyzes the controls of mass wasting and erosion/sediment transport in channels on the topographic development. The data presented here imply that high relief along a topographic scarp, surface fracturing, elevated groundwater table during a more humid climate and an aquitard underlying permeable ignimbrites are preparatory causal factors for landsliding >2.5 Ma ago. A strong seismic event then possibly resulted in the displacement of ca. 26 km3 of mass. Subsequent modification of the landslide scar occurred by backward erosion, resulting in the establishment of a dendritic drainage network and the removal of an additional ca. 24 km3 of material. It appears that this mass was produced by mass wasting in the headwaters, and exported by high-concentrated debris flows in channels. In addition, morphometric information suggest that whereas the geometrical development of the Lluta collapse has been controlled by gravitational mass wasting, the rates of the development of this geomorphic unit have been limited by the export rates of mass and hence by the transport capacity of the flows.  相似文献   
9.
Neogene and late Quaternary sedimentary deposits corresponding respectively to the Barreiras Formation and Post-Barreiras Sediments are abundant along the Brazilian coast. Such deposits are valuable for reconstructing sea level fluctuations and recording tectonic reactivation along the passive margin of South America. Despite this relevance, much effort remains to be invested in discriminating these units in their various areas of occurrence. The main objective of this work is to develop and test a new methodology for semi-automated mapping of Neogene and late Quaternary sedimentary deposits in northeastern Brazil integrating geophysical and remote sensing data. The central onshore Paraíba Basin was selected due to the recent availability of a detailed map based on the integration of surface and subsurface geological data. We used airborne gamma-ray spectrometry (i.e., potassium-K and thorium-Th concentration) and morphometric data (i.e., relief–dissection, slope and elevation) extracted from the digital elevation model (DEM) generated by the Shuttle Radar Topography Mission (SRTM). The procedures included: (a) data integration using geographic information systems (GIS); (b) exploratory statistical analyses, including the definition of parameters and thresholds for class discrimination for a set of sample plots; and (c) development and application of a decision-tree classification. Data validation was based on: (i) statistical analysis of geochemical and airborne gamma-ray spectrometry data consisting of K and Th concentrations; and (ii) map validation with the support of a confusion matrix, overall accuracy, as well as quantity disagreement and allocation disagreement for accuracy assessment based on field points. The concentration of K successfully separated the sedimentary units of the basin from Precambrian basement rocks. The relief–dissection morphometric variable allowed the discrimination between the Barreiras Formation and the Post-Barreiras Sediments. In addition, two units of the latter (i.e., PB1 and PB2) previously mapped in the field were promptly separated based on Th concentration. A regression analysis indicated that the relationship between geophysical and geochemical values obtained for the PB1, PB2 and Barreiras Formation is significant (R-squared = 0.91; p-value <0.05). Map validation presented a high overall accuracy of 84%, with a coefficient of quantity disagreement of 12% and a coefficient of allocation disagreement of 8%. These results indicate that the methodology applied in the central onshore Paraíba Basin can be successfully used for mapping the Barreiras Formation and Post-Barreiras Sediments in other areas of the Brazilian coast. The ability to rapidly and precisely map these units using such methodology could reveal their geographic distribution along the northeastern coast of Brazil.  相似文献   
10.
A Digital Terrain Model derived from high resolution Lidar data allows the determination of the morphometric and physical parameters of a lava flow erupted from the Somma–Vesuvius volcano in 1944. The downstream variation of morphometric parameters including slope, aspect, relative relief, thickness, width, and cross sectional area is analyzed, and the changes in viscosity, velocity and flow rate are estimated. The aims of the analyses are to recognize different flow surfaces, to reconstruct the flow kinematics, and to obtain information on the mechanism of emplacement. The results indicate that the 1944 lava flow can be divided in three sectors: a near vent sector (NVS) characterized by a toe-like surface, an intermediate sector (IS) with an ‘a’ātype brittle surface, and a distal sector (DS) with a sheet-like ductile surface. Lateral leveés and channels do not occur in NVS, whereas they are well developed in IS. In DS, leveés increase with an increasing distance from the vent. Fold-like surfaces occur in NVS and DS, reflecting local shortening processes due to a decrease in the slope of the substratum and overflows from the main channel. IS and DS emplaced between March 18 and 21, 1944, whereas NVS emplaced on March 19 and partly covered IS. The morphometric and physical parameters indicate that IS moved in a ‘tube’-like regime, whereas DS emplaced in a 'mobile crust' regime. The IS to DS transition is marked by an increase in velocity and the flow rate, and by a decrease in thickness, width, cross sectional area, and viscosity. This transition is due to an abrupt increase in the slope of the substratum. The estimated velocity values are in good agreement with the measurements during the 1944 eruption. The analysis used here may be extended to other lava flows. Some gravity flows (debris/mud flows, floods, and avalanches) have rheological properties and shapes similar to those of lavas, and the same process-form relationships may apply to these flows. The approach used here may be therefore useful for evaluating hazards from various gravity currents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号