首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
地球物理   6篇
  2021年   1篇
  2019年   1篇
  2014年   1篇
  2008年   1篇
  2006年   1篇
  1997年   1篇
排序方式: 共有6条查询结果,搜索用时 421 毫秒
1
1.
Willow communities dominate mid‐elevation riparian areas throughout the Rocky Mountains of North America. However, many willow stands are rapidly declining in aerial cover and individual plants in stature. A poor understanding of the processes that control willow establishment hinders identifying the causes of this decline. We analysed the processes that have facilitated or limited willow establishment over the last half of the 20th century on two large floodplains in Rocky Mountain National Park in Colorado by addressing two questions: (1) How does hydrologic regime control willow establishment on different fluvial landforms? (2) How might climate‐driven variations in hydrologic regime affect future willow establishment? We precisely aged willows on the three most common fluvial landforms, stream point bars, drained beaver ponds, and abandoned channels, and statistically related establishment dates to patterns of annual stream peak flow. The role of peak flow on willow establishment varied significantly by landform. Willow recruitment had occurred nearly every year on point bars. In former beaver complexes, most willows had established following dam breaches, whereas willows had established on abandoned channels for several years following channel avulsion. Establishment on point bars and abandoned channels was driven by peak flows of 2‐ to 5‐year return intervals, whereas in abandoned beaver ponds most establishment was associated with flow events of >5‐year return interval. Models of climate change suggest that temperatures will increase and precipitation seasonality will shift over the coming decades in the Rocky Mountains, leading to earlier spring runoff, lower summer and fall flows, decreased snowpack and decreased soil moisture. Such changes are likely to diminish opportunities for willow establishment. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
2.
Forest biomass reductions in overgrown forests have the potential to provide hydrologic benefits in the form of improved forest health and increased streamflow production in water-limited systems. Biomass reductions may also alter evaporation. These changes are generated when water that previously would have been transpired or evaporated from the canopy of the removed vegetation is transferred to transpiration of the remaining vegetation, streamflow, and/or non-canopy evaporation. In this study, we combined a new vegetation-change water-balance approach with lumped hydrologic modelling outputs to examine the effects of forest biomass reductions on transpiration of the remaining vegetation and streamflow in California's Sierra Nevada. We found that on average, 102 mm and 263 mm (8.0% and 20.6% of mean annual precipitation [MAP]) of water were made available following 20% and 50% forest biomass-reduction scenarios, respectively. This water was then partitioned to both streamflow and transpiration of the remaining forest, but to varying degrees depending on post-biomass-reduction precipitation levels and forest biomass-reduction intensity. During dry periods, most of the water (approximately 200 mm [15.7% on MAP] for the 50% biomass-reduction scenario) was partitioned to transpiration of the remaining trees, while less than 50 mm (3.9% on MAP) was partitioned to streamflow. This increase in transpiration during dry periods would likely help trees maintain forest productivity and resistance to drought. During wet periods, the hydrologic benefits of forest biomass reductions shifted to streamflow (200 mm [15.7% on MAP]) and away from transpiration (less than 150 mm [11.8% on MAP]) as the remaining trees became less water stressed. We also found that streamflow benefits per unit of forest biomass reduction increased with biomass-reduction intensity, whereas transpiration benefits decreased. By accounting for changes in vegetation, the vegetation-change water balance developed in this study provided an improved assessment of watershed-scale forest health benefits associated with forest biomass reductions.  相似文献   
3.
In this work, we used the Regional Hydro‐Ecological Simulation System (RHESSys) model to examine runoff sensitivity to land cover changes in a mountain environment. Two independent experiments were evaluated where we conducted simulations with multiple vegetation cover changes that include conversion to grass, no vegetation cover and deciduous/coniferous cover scenarios. The model experiments were performed at two hillslopes within the Weber River near Oakley, Utah watershed (USGS gauge # 10128500). Daily precipitation, air temperature and wind speed data as well as spatial data that include a digital elevation model with 30 m grid resolution, soil texture map and vegetation and land use maps were processed to drive RHESSys simulations. Observed runoff data at the watershed outlet were used for calibration and verification. Our runoff sensitivity results suggest that during winter, reduced leaf area index (LAI) decreases canopy interception resulting in increased snow accumulations and hence snow available for runoff during the early spring melt season. Increased LAI during the spring melt season tends to delay the snow melting process. This delay in snow melting process is due to reduced radiation beneath high LAI surfaces relative to low LAI surfaces. The model results suggest that annual runoff yield after removing deciduous vegetation is on average about 7% higher than with deciduous vegetation cover, while annual runoff yield after removing coniferous vegetation is on average as about 2% higher than that produced with coniferous vegetation cover. These simulations thus help quantify the sensitivity of water yield to vegetation change. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
4.
Transpiration is an important component of soil water storage and stream‐flow and is linked with ecosystem productivity, species distribution, and ecosystem health. In mountain environments, complex topography creates heterogeneity in key controls on transpiration as well as logistical challenges for collecting representative measurements. In these settings, ecosystem models can be used to account for variation in space and time of the dominant controls on transpiration and provide estimates of transpiration patterns and their sensitivity to climate variability and change. The Regional Hydro‐Ecological Simulation System (RHESSys) model was used to assess elevational differences in sensitivity of transpiration rates to the spatiotemporal variability of climate variables across the Upper Merced River watershed, Yosemite Valley, California, USA. At the basin scale, predicted annual transpiration was lowest in driest and wettest years, and greatest in moderate precipitation years (R2 = 0·32 and 0·29, based on polynomial regression of maximum snow depth and annual precipitation, respectively). At finer spatial scales, responsiveness of transpiration rates to climate differed along an elevational gradient. Low elevations (1200–1800 m) showed little interannual variation in transpiration due to topographically controlled high soil moistures along the river corridor. Annual conifer stand transpiration at intermediate elevations (1800–2150 m) responded more strongly to precipitation, resulting in a unimodal relationship between transpiration and precipitation where highest transpiration occurred during moderate precipitation levels, regardless of annual air temperatures. Higher elevations (2150–2600 m) maintained this trend, but air temperature sensitivities were greater. At these elevations, snowfall provides enough moisture for growth, and increased temperatures influenced transpiration. Transpiration at the highest elevations (2600–4000 m) showed strong sensitivity to air temperature, little sensitivity to precipitation. Model results suggest elevational differences in vegetation water use and sensitivity to climate were significant and will likely play a key role in controlling responses and vulnerability of Sierra Nevada ecosystems to climate change. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
5.
The potential for increased loads of dissolved organic carbon (DOC) in streams and rivers is a concern for regulating the water quality in water supply watersheds. With increasing hydroclimatic variability related to global warming and shifts in forest ecosystem community and structure, understanding and predicting the magnitude and variability of watershed supply and transport of DOC over multiple time scales have become important research and management goals. In this study, we use a distributed process‐based ecohydrological model (Regional Hydro‐Ecological Simulation System [RHESSys]) to explore controls and predict streamflow DOC loads in Biscuit Brook. Biscuit Brook is a forested headwater catchment of the Neversink Reservoir, part of the New York City water supply system in the Catskill Mountains. Three different model structures of RHESSys were proposed to explore and evaluate hypotheses addressing how vegetation phenology and hydrologic connectivity between deep groundwater and riparian zones influence streamflow and DOC loads. Model results showed that incorporating dynamic phenology improved model agreement with measured streamflow in spring, summer, and fall and fall DOC concentration, compared with a static phenology. Additionally, the connectivity of deep groundwater flux through riparian zones with dynamic phenology improved streamflow and DOC flux in low flow conditions. Therefore, this study suggests the importance of inter‐annual vegetation phenology and the connectivity of deep groundwater drainage through riparian zones in the hydrology and stream DOC loading in this forested watershed and the ability of process‐based ecohydrological models to simulate these dynamics. The advantage of a process‐based modelling approach is specifically seen in the sensitivity to forest ecosystem dynamics and the interactions of hydroclimate variability with ecosystem processes controlling the supply and distribution of DOC. These models will be useful to evaluate different forest management approaches toward mitigating water quality concerns.  相似文献   
6.
The hydrological recovery of watersheds from disturbances such as fire and harvest can change the magnitude and distribution of flow paths as the canopy regenerates. The spatial distribution of net water input to the soil–topography system is mediated by vegetation patterns through the processes of interception, evapotranspiration and snowmelt. We have previously described RHESSys, a distributed model of water and carbon flux with a prescribed canopy cover. Although the canopy structure varied spatially it did not change through time. We present an expanded model in which carbon and nitrogen are dynamically coupled with distributed hydrology. The model fixes and allocates canopy carbon annually to reflect changes in climate forcing. We test the interactions of the forest ecosystem to distributed hydrology through controlled experiments. In the first experiment, we prescribe canopy cover and examine the sensitivity of the hydrological outputs to the distribution of vegetation. The canopy distribution is found to have significant effects on simulated hydrological outputs where evaporative demand exceeds available water. In a second experiment we simulate the canopy leaf area index (LAI) across the topography and through time. The model is executed over 100 years using repeated 10-year meteorological records to investigate spatial and temporal patterns of LAI. Annual precipitation and temperature differences result in temporally fluctuating LAI about a reasonably stable long-term mean. The topographical position has a strong effect on local forest canopy characteristics. As expected, simulated ecosystem processes are found to be sensitive to rooting depth in more water limited environments. © 1997 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号