首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   1篇
地质学   3篇
  2005年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The development of large erosive subglacial forms in unconsolidated sediments is generally attributed to the eroding power of subglacial meltwater flowing under high pressure conditions. Most explanations, however, differ in the source of meltwater and the speed at which it erodes the subglacial bed. Based on the geometry of deep tunnel valleys and glacial basins in northwestern Europe, a reconstruction of subglacial hydrological conditions during the development of subglacial depressions is made. It is demonstrated that the flow of subglacial meltwater in subglacial channels under high glaciostatic pressures is only capable of eroding large volumes of sediment as long as there is imminent glaciohydrological instability. For the thick aquifers in northwestern Europe, this instability is achieved when large quantities of supraglacial meltwater are available. Furthermore, a theoretical definition is given for maximum depression depth to be reached by subglacial erosion. It is shown that this maximum depth is strongly related to average air temperatures during deglaciation and that glacier bed lowering is to be expected during any final phase of glaciations. The theoretical framework presented enables a tentative comparison between large-scale glacial morphology of different glaciations in northwestern Europe.  相似文献   
2.
The two Saalian push moraines of ltterbeck - Uelsen, formed during the Older Saalian glaciation, consist of Tertiary and Quaternary deposits. Locally, glaciofluvial deposits are prominent as a result of reworking of older deposits by meltwater. The push moraines are built up from a number of imbricated and folded structural units, which have moved laterally and, in part, frontally from two glacial basins. Dominant structures are large, shallow and flat-lying glaciotectonic nappes that have been displaced over distances of at lest 1 km in the direction of tectonic transport. Overprinting relations of two deformation phases give a relative age difference between the two push morianes.  相似文献   
3.
The sedimentary record from the Ugleelv Valley on central Jameson Land, East Greenland, adds new information about terrestrial palaeoenvironments and glaciations to the glacial history of the Scoresby Sund fjord area. A western extension of a coastal ice cap on Liverpool Land reached eastern Jameson Land during the early Scoresby Sund glaciation (≈the Saalian). During the following glacial maximum the Greenland Ice Sheet inundated the Jameson Land plateau from the west. The Weichselian also starts with an early phase of glacial advance from the Liverpool Land ice cap, while polar desert and ice‐free conditions characterised the subsequent part of the Weichselian on the Jameson Land plateau. The two glaciation cycles show a repeated pattern of interaction between the Greenland Ice Sheet in the west and an ice cap on Liverpool Land in the east. Each cycle starts with extensive glacier growth in the coastal mountains followed by a decline of the coastal glaciation, a change to cold and arid climate and a late stage of maximum extent of the Greenland Ice Sheet. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
4.
The Saalian sequence of Belchatów, central Poland, is exceptionally thick and complete. Five tills, two from the older Saalian (Odranian, Drenthe) and three from the younger Saalian (Wartanian, Warthe), which are separated by the fluvial Chojny Formation, have been identified. The Saalian sequence at Be?chatów is underlain by Holsteinian and overlain by Eemian sequences, both palaeobotanically analysed. The Chojny Formation contains deposits of meandering (lower member) and braided (upper member) rivers, with occasional aeolian deposits. The lower member of the formation contains numerous organic layers. Pollen analysis indicates temperate (sub-boreal) to cold (sub-arctic) climatic conditions, with coniferous to mixed forests in the optimum phase of the interstadial. The interstadial floras of the Chojny Formation are interpreted as representing the intra-Saalian Pilica Interstadial. Profiles from Belchatów are designated as the stratotype profiles of this substage. The data from Be?chatów show clearly that reforestation occurred between the major advances of the Saalian ice sheet, although only interstadial rank, not interglacial, may be inferred from the pollen data.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号