首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2090篇
  免费   224篇
  国内免费   148篇
测绘学   5篇
大气科学   171篇
地球物理   754篇
地质学   179篇
海洋学   871篇
天文学   321篇
综合类   19篇
自然地理   142篇
  2024年   3篇
  2023年   5篇
  2022年   18篇
  2021年   31篇
  2020年   38篇
  2019年   83篇
  2018年   33篇
  2017年   78篇
  2016年   62篇
  2015年   80篇
  2014年   73篇
  2013年   76篇
  2012年   35篇
  2011年   116篇
  2010年   71篇
  2009年   144篇
  2008年   210篇
  2007年   169篇
  2006年   114篇
  2005年   101篇
  2004年   99篇
  2003年   113篇
  2002年   96篇
  2001年   88篇
  2000年   114篇
  1999年   107篇
  1998年   102篇
  1997年   43篇
  1996年   26篇
  1995年   18篇
  1994年   21篇
  1993年   21篇
  1992年   16篇
  1991年   11篇
  1990年   9篇
  1989年   11篇
  1988年   6篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
排序方式: 共有2462条查询结果,搜索用时 14 毫秒
1.
Beaver dam analogues (BDAs) are a cost-effective stream restoration approach that leverages the recognized environmental benefits of natural beaver dams on channel stability and local hydrology. Although natural beaver dams are known to exert considerable influence on the hydrologic conditions of a stream system by mediating geomorphic processes, nutrient cycling, and groundwater–surface water interactions, the impacts of beaver-derived restoration methods on groundwater–surface water exchange are poorly characterized. To address this deficit, we monitored hyporheic exchange fluxes and streambed porewater biogeochemistry across a sequence of BDAs installed along a central Wyoming stream during the summer of 2019. Streambed fluxes were quantified by heat tracing methods and vertical hydraulic gradients. Biogeochemical activity was evaluated using major ion porewater chemistry and principal component analysis. Vertical fluxes of approximately 1.0 m/day were observed around the BDAs, as was the development of spatially heterogeneous zones of nitrate production, groundwater upwelling, and anaerobic reduction. Strong contrasts in hyporheic zone processes were observed across BDAs of differing sizes. This suggests that structures may function with size-dependent behaviour, only altering groundwater–surface water interactions after a threshold hydraulic step height is exceeded. Patterns of hyporheic exchange and biogeochemical cycling around the studied BDAs resemble those around natural beaver dams, suggesting that BDAs may provide comparable benefits to channel complexity and near-stream function over a 1-year period.  相似文献   
2.
The substructures of offshore wind turbines are subjected to extreme breaking irregular wave forces. The present study is focused on investigating breaking irregular wave forces on a monopile using a computational fluid dynamics (CFD) based numerical model. The breaking irregular wave forces on a monopile mounted on a slope are investigated with a numerical wave tank. The experimental and numerical irregular free surface elevations are compared in the frequency-domain for the different locations in the vicinity of the cylinder. A numerical analysis is performed for different wave steepness cases to understand the influence of wave steepness on the breaking irregular wave loads. The wave height transformation and energy level evolution during the wave shoaling and wave breaking processes is investigated. The higher-frequency components generated during the wave breaking process are observed to play a significant role in initiating the secondary force peaks. The free surface elevation skewness and spectral bandwidth during the wave transformation process are analysed and an investigation is performed to establish a correlation of these parameters with the breaking irregular wave forces. The role of the horizontal wave-induced water particle velocity at the free surface and free surface pressure in determining the breaking wave loads is highlighted. The higher-frequency components in the velocity and pressure spectrum are observed to be significant in influencing the secondary peaks in the breaking wave force spectrum.  相似文献   
3.
This paper investigates an approach to limit the fullness of ‘tuning’ provided by wave-by-wave impedance matching control of wave energy devices in irregular waves. A single analytical formulation based on the Lagrange multiplier approach of Evans [1] is used to limit the velocity amplitude while also limiting the closeness of the phase match between velocity and exciting force. The paper studies the effect of the present technique in concurrently limiting the device velocity and the required control/actuation force. Time domain application requires wave-profile prediction, which here is based on a deterministic propagation model. Also examined in the time domain is the effect of possible violation of the displacement constraint, which for many designs implies impacts at hard stops within the power take-off mechanism. Time domain simulations are carried out for a 2-body axisymmetric converter (with physical end-stops) in sea states reported for a site off the US east coast. It is found that the approach leads to effective power conversion in the less energetic sea states, while as desired, considerable muting of the optimal response is found in the larger sea states. Under the assumptions of this work, the end-stop collisions are found to have a minor effect on the power conversion. The present approach could be used to guide the design of power take-off systems so that their displacement stroke, maximum force, and resistive and reactive power limits are well-matched to the achievable performance of a given controlled primary energy converter.  相似文献   
4.
An increasing number of experiments are being conducted to study the design and performance of wave energy converters. Often in these tests, a real-time realization of prospective control algorithms is applied in order to assess and optimize energy absorption as well as other factors. This paper details the design and execution of an experiment for evaluating the capability of a model-scale WEC to execute basic control algorithms. Model-scale hardware, system, and experimental design are considered, with a focus on providing an experimental setup capable of meeting the dynamic requirements of a control system. To more efficiently execute such tests, a dry bench testing method is proposed and utilized to allow for controller tuning and to give an initial assessment of controller performance; this is followed by wave tank testing. The trends from the dry bench test and wave tank test results show good agreement with theory and confirm the ability of a relatively simple feedback controller to substantially improve energy absorption. Additionally, the dry bench testing approach is shown to be an effective and efficient means of designing and testing both controllers and actuator systems for wave energy converters.  相似文献   
5.
6.
7.
8.
Pco2 of air and seawater samples from the East China Sea(ECS) were measured in situ in autumn, 1994,Ocean currents,terrestrial fluviation,biological activities,etc.,Pco2 char-acters in air and seawater were investigated,CO2 flux and its character in the East China Sea are discussed on the basis of the Pco2 profiles of air and seawater,It was clear that the nearshore was the source of CO2;and tht the oulter sea area was the sink of CO2; and that the shelf area of the EXS is a net sink for atmospheric CO2 in autumn.  相似文献   
9.
We use cosmological smooth particle hydrodynamical (SPH) simulations to study the effects of mergers in the star formation history of galactic objects in hierarchical clustering scenarios. We find that during some merger events, gaseous discs can experience two starbursts: the first one during the orbital decay phase, owing to gas inflows driven as the satellite approaches, and the second one when the two baryonic clumps collide. A trend for these first induced starbursts to be more efficient at transforming the gas into stars is also found. We detect that systems that do not experience early gas inflows have well-formed stellar bulges and more concentrated potential wells, which seem to be responsible for preventing further gas inward transport triggered by tidal forces. The potential wells concentrate owing to the accumulation of baryons in the central regions and of dark matter as the result of the pulling in by baryons. The coupled evolution of the dark matter and baryons would lead to an evolutionary sequence during which systems with shallower total potential wells suffer early gas inflows during the orbital decay phase that help to feed their central mass concentration, pulling in dark matter and contributing to build up more stable systems. Within this scenario, starbursts triggered by early gas inflows are more likely to occur at early stages of evolution of the systems and to be an important contributor to the formation of stellar bulges. Our results constitute the first proof that bulges can form as the product of collapse, collisions and secular evolution in a cosmological framework, and they are consistent with a rejuvenation of the stellar population in bulges at intermediate z with, at least, 50 per cent of the stars (in SCDM) being formed at high z .  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号